Unsupervised similarity learning through cartesian product of ranking references for image retrieval tasks
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Arquivos
Fontes externas
Fontes externas
Resumo
Despite the consistent advances in visual features and other Content-Based Image Retrieval techniques, measuring the similarity among images is still a challenging task for effective image retrieval. In this scenario, similarity learning approaches capable of improving the effectiveness of retrieval in an unsupervised way are indispensable. A novel method, called Cartesian Product of Ranking References (CPRR), is proposed with this objective in this paper. The proposed method uses Cartesian product operations based on rank information for exploiting the underlying structure of datasets. Only subsets of ranked lists are required, demanding low computational efforts. An extensive experimental evaluation was conducted considering various aspects, four public datasets and several image features. Besides effectiveness, experiments were also conducted to assess the efficiency of the method, considering parallel and heterogeneous computing on CPU and GPU devices. The proposed method achieved significant effectiveness gains, including competitive state-of-the-art results on popular benchmarks.
Descrição
Palavras-chave
Cartesian product, content-based image retrieval, effectiveness, efficiency, unsupervised learning
Idioma
Inglês
Citação
Proceedings - 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2016, p. 249-256.




