Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Application of the Artificial Neural Network (ANN) Approach for Prediction of the Kinetic Parameters of Lignocellulosic Fibers

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Lignocellulosic fibers are widely applied as reinforcement in polymer composites due to their properties. The thermal degradation behavior governs the maximum temperature at which the fiber can be applied without significant mass loss. It is possible to determine this temperature using Thermogravimetric Analysis (TG). In particular, when curves are obtained at different heating rates, kinetic parameters can be determined by using Arrhenius-based equations, and more detailed characteristics of the material are obtained. However, every curve obtained at a distinct heating rate demands material, cost and time. Methods to predict thermogravimetric curves can be very useful in the materials science field, and in this sense, mathematical approaches are powerful tools, if well employed. For this reason, in the present study, thermogravimetric curves from curaua fiber were obtained at four different heating rates (5, 10, 20 and 40 °C·min−1) and Vyazovkin kinetic parameters were obtained using free available software. After, the experimental curves were fitted using an artificial neural network (ANN) approach followed by a Surface Response Methodology (SRM) aiming to obtain curves at any heating rate between the minimum and maximum experimental heating rates. Finally, Vyazovkin kinetic parameters were tested again, with the new predicted curves at the heating rates of 7, 15, 30 and 50 °C·min−1. Similar values of the kinetic parameters were obtained compared to the experimental ones. In conclusion, due to the capability to learn from the own data, ANN combined with SRM seems to be an excellent alternative to predict TG curves that do not test experimentally, opening the range of applications.

Descrição

Palavras-chave

artificial neural network, kinetic analysis, lignocellulosic fiber, thermal degradation

Idioma

Inglês

Citação

Textiles, v. 1, n. 2, p. 258-267, 2021.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso