Publicação:
Estimating water erosion from the brightness index of orbital images: A framework for the prognosis of degraded pastures

dc.contributor.authorVieira, Alessandra Soares
dc.contributor.authordo Valle Junior, Renato Farias [UNESP]
dc.contributor.authorRodrigues, Vinicius Silva
dc.contributor.authorda Silva Quinaia, Thiago Luiz
dc.contributor.authorMendes, Rafaella Gouveia
dc.contributor.authorValera, Carlos Alberto [UNESP]
dc.contributor.authorFernandes, Luís Filipe Sanches [UNESP]
dc.contributor.authorPacheco, Fernando António Leal [UNESP]
dc.contributor.institutionInstitute of Technological and Exact Sciences (ICTE)
dc.contributor.institutionGeoprocessing Laboratory
dc.contributor.institutionCoordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande
dc.contributor.institutionUniversity of Trás-os-Montes e Alto Douro
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:24:18Z
dc.date.available2021-06-25T10:24:18Z
dc.date.issued2021-07-01
dc.description.abstractThe inadequate management of soils and the absence of conservation practices favor the degradation of pastures and can trigger adverse environmental alterations and damage under the terms of Brazilian Federal Law no. 6.938/1981. Based on this premise, this study aimed to estimate soil losses caused by water erosion in pasture areas using the brightness index (BI) from the annual series of Landsat 8 images in different geological formations. A specifically prepared Google Earth Engine (GEE) script automatically extracted the BI from the images. The study occurred in the Environmental Protection Area (EPA) of Uberaba River basin (Minas Gerais, Brazil). To accomplish the goal, 180 digital 500-wide random buffers were selected from 3 geologic types (60 points per type), and then analyzed for zonal statistics of USLE (Universal Soil Loss Equation) soil loss and BI in a Geographic Information System. The regression models BI versus USLE soil loss allowed estimating BI soil losses over the pastures of EPA. The model fittings were remarkable. The validation of soil loss maps in the EPA occurred in pasture phytophysiognomies through the probing of penetration resistance in 37 randomly selected locations. The results were satisfactory, mostly those based on the BI. The BI losses increased for greater resistances. Amplified losses also occurred in regions exposed to environmental land use conflicts (actual uses that deviate from land capability or natural use). Overall, the BI approach proved efficient to accurately track soil losses and pasture degradation over large areas, with the advantage of standing on a single parameter easily accessed through remote sensed data. From an environmental standpoint, this is an important result, because the accurate diagnosis and prognosis of degraded pastures is paramount to implement mitigation measures following the “polluter pays principle”, even more in Brazil where the areas occupied by degraded pastures are enormous.en
dc.description.affiliationFederal University of Triângulo Mineiro Institute of Technological and Exact Sciences (ICTE)
dc.description.affiliationFederal Institute of Triângulo Mineiro Uberaba Campus Geoprocessing Laboratory
dc.description.affiliationCoordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951
dc.description.affiliationCenter for Research and Agro-environmental and Biological Technologies University of Trás-os-Montes e Alto Douro, Ap. 1013
dc.description.affiliationCenter of Chemistry of Vila Real University of Trás-os-Montes e Alto Douro, Ap. 1013
dc.description.affiliationPOLUS—Grupo de Política de Uso do Solo Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n
dc.description.affiliationUnespPOLUS—Grupo de Política de Uso do Solo Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para a Ciência e a Tecnologia
dc.description.sponsorshipIdFundação para a Ciência e a Tecnologia: UID/00616/2020
dc.description.sponsorshipIdFundação para a Ciência e a Tecnologia: UID/04033/2020
dc.identifierhttp://dx.doi.org/10.1016/j.scitotenv.2021.146019
dc.identifier.citationScience of the Total Environment, v. 776.
dc.identifier.doi10.1016/j.scitotenv.2021.146019
dc.identifier.issn1879-1026
dc.identifier.issn0048-9697
dc.identifier.scopus2-s2.0-85101660151
dc.identifier.urihttp://hdl.handle.net/11449/205962
dc.language.isoeng
dc.relation.ispartofScience of the Total Environment
dc.sourceScopus
dc.subjectBrightness index
dc.subjectEnvironmental land use conflict
dc.subjectGeographic information system
dc.subjectPasture degradation
dc.subjectWater erosion
dc.subject“Polluter-pays principle”
dc.titleEstimating water erosion from the brightness index of orbital images: A framework for the prognosis of degraded pasturesen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções