Logo do repositório

Graph Matching Networks Meet Optimum-Path Forest: How to Prune Ensembles Efficiently

dc.contributor.authorJodas, Danilo [UNESP]
dc.contributor.authorPassos, Leandro A. [UNESP]
dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorCosta, Kelton [UNESP]
dc.contributor.authorPaulo Papa, João [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:13:32Z
dc.date.issued2025-01-01
dc.description.abstractEnsemble pruning techniques are widely used to enhance a set of classifiers’ efficiency and predictive performance by selecting a subset of representative models, preventing redundancy, and ensuring diversity in classification tasks. The Optimum-Path Forest (OPF), a stable and efficient graph-based framework, offers versatile supervised and unsupervised capabilities in various machine-learning applications. The supervised version provides remarkable results with a simple graph-based structure produced by a training process conducted over a single dataset. However, one can notice little effort in OPF-based ensemble learning. This paper introduces an innovative approach to pruning OPF classifiers using meta-descriptions learned by Graph-Matching Networks, which are further employed to cluster similar OPF instances. The strategy selectively chooses representative models that excel in predictive tasks from groups generated by unsupervised OPF. Results demonstrate competitive performance to state-of-the-art pruning algorithms, with experiments conducted over fifteen public datasets, encouraging further exploration of Graph Matching Networks applied to ensemble pruning.en
dc.description.affiliationSão Paulo State University (UNESP) School of Sciences
dc.description.affiliationUnespSão Paulo State University (UNESP) School of Sciences
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2018/25225-9
dc.description.sponsorshipIdFAPESP: 2019/07665- 4
dc.description.sponsorshipIdFAPESP: 2023/01374-3
dc.description.sponsorshipIdFAPESP: 2023/03726-4
dc.description.sponsorshipIdFAPESP: 2023/10823-6
dc.description.sponsorshipIdFAPESP: 2023/14354-0
dc.description.sponsorshipIdFAPESP: 2023/14427-8
dc.description.sponsorshipIdCNPq: 308529/2021-9
dc.description.sponsorshipIdCNPq: 400756/2024-2
dc.format.extent1-18
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-78183-4_1
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 15307 LNCS, p. 1-18.
dc.identifier.doi10.1007/978-3-031-78183-4_1
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85212292686
dc.identifier.urihttps://hdl.handle.net/11449/308751
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectEnsemble Pruning
dc.subjectGraph Matching
dc.subjectGraph Matching Networks
dc.subjectOptimum-Path Forest
dc.titleGraph Matching Networks Meet Optimum-Path Forest: How to Prune Ensembles Efficientlyen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-0370-1211[1]
unesp.author.orcid0000-0003-3529-3109[2]
unesp.author.orcid0000-0003-0594-3764[3]
unesp.author.orcid0000-0001-5458-3908[4]
unesp.author.orcid0000-0002-6494-7514[5]

Arquivos

Coleções