Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

CHEIC: Chemical Image Classificator. An intelligent system for identification of volatiles compounds with potential for respiratory diseases using Deep Learning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

CHEIC (Chemical Image Classificator) is a web platform that uses convolutional neural networks (CNNs) to identify patterns of volatile molecules from microorganisms with potential against respiratory and bronchopulmonary diseases such as SARS-CoV-2 and asthma. The platform lets users find volatile molecules with biological activity through molecular docking. This work presents the functionalities of the CHEIC platform, which accommodates a Deep Learning model with 93% accuracy in classifying volatile compounds and candidate molecules for respiratory disease drugs. The artificial intelligence model indicated that out of 548 molecules used, 39 exhibited drug-like molecular features. By combining the indicative results of molecular docking emitted by the CHEIC platform with further analysis using 100 ns of Molecular Dynamics trajectory, four volatile compounds were found with the potential to modulate proteins associated with respiratory tract diseases such as asthma and SARS-CoV-2. Furthermore, CHEIC is a free and promising tool in the search for therapeutic agents for respiratory diseases, as well as providing valuable and fast insights for researchers interested in omics sciences.

Descrição

Palavras-chave

Artificial intelligence, Asthma, Convolutional neural network, Molecular dynamics, SARS-CoV-2

Idioma

Inglês

Citação

Expert Systems with Applications, v. 234.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso