Logo do repositório

An Evaluation of Bio-Inspired Resource Allocation Methods for Vehicular Edge Computing

dc.contributor.authorLieira, Douglas D. [UNESP]
dc.contributor.authorQuessada, Matheus S. [UNESP]
dc.contributor.authorSampaio, Sandra
dc.contributor.authorLoureiro, Antonio A. F.
dc.contributor.authorMeneguette, Rodolfo I.
dc.contributor.institutionFed Inst Sao Paulo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniv Manchester
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2025-04-29T20:11:54Z
dc.date.issued2024-05-01
dc.description.abstractResearchers in vehicular edge computing are witnessing a continuous search for a solution to the problem of how to best allocate computational resources to fulfill service requests from road vehicles efficiently. This problem combines several of the most difficult challenges associated with intelligent transportation systems (ITSs), such as limited computational resources, dynamic vehicular network topology, high vehicle mobility, and long task execution times. These challenges represent significant barriers to the success of ITSs, severely impacting user experience and use of the service. Among alternatives, bio-inspired algorithms have been used to support the complex decision-making associated with resource optimization due to their perceived success in simulating various natural behaviors and dealing with complex environments. However, to our knowledge, a comprehensive demonstration of their suitability and performance was never made when faced with the mentioned challenges. To fill this gap, we comprehensively investigate how the most prominent bio-inspired algorithms perform in challenging scenarios in vehicular edge computing, and compare them with other widely adopted alternatives. Our results show that bio-inspired algorithms are both suitable and superior in efficiency, fulfilling a higher number of tasks.en
dc.description.affiliationFed Inst Sao Paulo, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, Sao Paulo, Brazil
dc.description.affiliationUniv Manchester, Manchester, England
dc.description.affiliationUniv Fed Minas Gerais, Belo Horizonte, Brazil
dc.description.affiliationUniv Sao Paulo, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2020/07162-0
dc.description.sponsorshipIdFAPESP: 2022/00660-0
dc.description.sponsorshipIdFAPESP: 2018/23064-8
dc.format.extent120-126
dc.identifierhttp://dx.doi.org/10.1109/MCOM.022.2300099
dc.identifier.citationIeee Communications Magazine. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 62, n. 5, p. 120-126, 2024.
dc.identifier.doi10.1109/MCOM.022.2300099
dc.identifier.issn0163-6804
dc.identifier.urihttps://hdl.handle.net/11449/308297
dc.identifier.wosWOS:001214526500010
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Communications Magazine
dc.sourceWeb of Science
dc.subjectResource management
dc.subjectTask analysis
dc.subjectOptimization
dc.subjectUser experience
dc.subjectEdge computing
dc.subjectVehicle dynamics
dc.subjectProcess control
dc.titleAn Evaluation of Bio-Inspired Resource Allocation Methods for Vehicular Edge Computingen
dc.typeArtigopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication

Arquivos

Coleções