Publicação: The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.
Descrição
Palavras-chave
Invariant sphere, Invariant torus, Linearly stable periodic orbit, Sprott A system, Zero-Hopf bifurcation
Idioma
Inglês
Como citar
Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.