Logotipo do repositório
 

Publicação:
The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit.

Descrição

Palavras-chave

Invariant sphere, Invariant torus, Linearly stable periodic orbit, Sprott A system, Zero-Hopf bifurcation

Idioma

Inglês

Como citar

Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019, p. 157-165.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação