Publicação: Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).
Descrição
Palavras-chave
damped wave equation, strongly damped wave equation, dissipative semigroup, global attractor, uniform exponential dichotomy, upper, semicontinuity, lower semicontinuity
Idioma
Inglês
Como citar
Journal of Dynamics and Differential Equations. New York: Springer, v. 18, n. 3, p. 767-814, 2006.