Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

WB Score: A Novel Methodology for Visual Classifier Selection in Increasingly Noisy Datasets

dc.contributor.authorBilla, Wagner S.
dc.contributor.authorNegri, Rogério G. [UNESP]
dc.contributor.authorSantos, Leonardo B. L.
dc.contributor.institutionCenter for Monitoring and Early Warning of Natural Disasters (CEMADEN)
dc.contributor.institutionNational Institute for Space Research (INPE)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T19:33:50Z
dc.date.issued2023-12-01
dc.description.abstractThis article addresses the challenges of selecting robust classifiers with increasing noise levels in real-world scenarios. We propose the WB Score methodology, which enables the identification of reliable classifiers for deployment in noisy environments. The methodology addresses four significant challenges that are commonly encountered: (i) Ensuring classifiers possess robustness to noise; (ii) Overcoming the difficulty of obtaining representative data that captures real-world noise; (iii) Addressing the complexity of detecting noise, making it challenging to differentiate it from natural variations in the data; and (iv) Meeting the requirement for classifiers capable of efficiently handling noise, allowing prompt responses for decision-making. WB Score provides a comprehensive approach for classifier assessment and selection to address these challenges. We analyze five classic datasets and one customized flooding dataset in São Paulo. The results demonstrate the practical effect of using the WB Score methodology is the enhanced ability to select robust classifiers for datasets in noisy real-world scenarios. Compared with similar techniques, the improvement centers around providing a visual and intuitive output, enhancing the understanding of classifier resilience against noise, and streamlining the decision-making process.en
dc.description.affiliationCenter for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos
dc.description.affiliationNational Institute for Space Research (INPE), São José dos Campos
dc.description.affiliationScience and Technology Institute (ICT) São Paulo State University (UNESP), São José dos Campos
dc.description.affiliationUnespScience and Technology Institute (ICT) São Paulo State University (UNESP), São José dos Campos
dc.format.extent2497-2513
dc.identifierhttp://dx.doi.org/10.3390/eng4040142
dc.identifier.citationEng, v. 4, n. 4, p. 2497-2513, 2023.
dc.identifier.doi10.3390/eng4040142
dc.identifier.issn2673-4117
dc.identifier.scopus2-s2.0-85180508704
dc.identifier.urihttps://hdl.handle.net/11449/304084
dc.language.isoeng
dc.relation.ispartofEng
dc.sourceScopus
dc.subjectclassifier selection
dc.subjectcomputational classification
dc.subjectmachine learning
dc.subjectnoise robustness
dc.subjectvisual decision-making
dc.titleWB Score: A Novel Methodology for Visual Classifier Selection in Increasingly Noisy Datasetsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-2735-0900[1]
unesp.author.orcid0000-0002-4808-2362[2]
unesp.author.orcid0000-0002-3129-772X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos