Logotipo do repositório
 

Publicação:
Artificial Neural Network for Classification and Analysis of Degraded Soils

dc.contributor.authorBonini Neto, A. [UNESP]
dc.contributor.authorBonini, C. S. B. [UNESP]
dc.contributor.authorBisi, B. S. [UNESP]
dc.contributor.authorColetta, L. F. S. [UNESP]
dc.contributor.authorReis, A. R. dos [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:20:57Z
dc.date.available2018-11-26T17:20:57Z
dc.date.issued2017-03-01
dc.description.abstractThis study aimed to evaluate the Artificial Neural Network (ANN) to establish a classification and analysis of degraded soils and its recovery in response to lime and gypsum application. The analyzed degraded soil was classified as Oxisol, and the physical attributes considered were: soil density, soil porosity (macroporosity and microporosity) and soil penetration resistance. The ANN used in this study is the backpropagation composed of two layers, the middle layer and the output layer, with supervised training. The network has four inputs, that are the physical attributes of the soil, in the middle layer the network contains ten neurons and the output layer only one neuron, which has the function of informing if the soil was recovered (R), partially recovered (PR) or not recovered (NR). The analyzed data come from the year 2012, concerning the depths 0.0 - 0.1 m, 0.1 - 0.2 m and 0.2 - 0.4 m. Considering the performance of ANN, it was verified that the network obtained an adequate training to classify the degraded soils, showing low mean square error of analyzed data. Therefore, ANN is considered an interesting alternative and a powerful automatic tool to classify degraded soils during recovery process.en
dc.description.affiliationUNESP, Fac Ciencias & Engn, Tupa, Brazil
dc.description.affiliationUNESP, Fac Ciencias Agron & Tecnol, Dracena, Brazil
dc.description.affiliationUnespUNESP, Fac Ciencias & Engn, Tupa, Brazil
dc.description.affiliationUnespUNESP, Fac Ciencias Agron & Tecnol, Dracena, Brazil
dc.format.extent503-509
dc.identifier.citationIeee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 15, n. 3, p. 503-509, 2017.
dc.identifier.fileWOS000396149200018.pdf
dc.identifier.issn1548-0992
dc.identifier.urihttp://hdl.handle.net/11449/162565
dc.identifier.wosWOS:000396149200018
dc.language.isopor
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Latin America Transactions
dc.relation.ispartofsjr0,253
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSoil physics
dc.subjectArtificial intelligence
dc.subjectRecovery of soil
dc.subjectIntelligent systems
dc.titleArtificial Neural Network for Classification and Analysis of Degraded Soilsen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes9898242753869408[1]
unesp.author.lattes3951143759106367[5]
unesp.author.lattes9580260484174480[2]
unesp.author.orcid0000-0002-0250-489X[1]
unesp.author.orcid0000-0002-6527-2520[5]
unesp.author.orcid0000-0002-6482-3263[2]
unesp.departmentAdministração - Tupãpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000396149200018.pdf
Tamanho:
599.37 KB
Formato:
Adobe Portable Document Format
Descrição: