Logotipo do repositório
 

Publicação:
Exploring coarse- to fine-scale approaches for mapping and estimating forest volume from Brazilian National Forest Inventory data

dc.contributor.authorDavid, Hassan C.
dc.contributor.authorMacFarlane, David W.
dc.contributor.authorNetto, Sylvio Pellico
dc.contributor.authorDalla Corte, Ana Paula
dc.contributor.authorPiotto, Daniel
dc.contributor.authorOliveira, Yeda M. M. de
dc.contributor.authorMorais, Vinicius A.
dc.contributor.authorSanquetta, Carlos R.
dc.contributor.authorNeto, Rorai P. M. [UNESP]
dc.contributor.institutionRural Fed Univ Amazonia
dc.contributor.institutionMichigan State Univ
dc.contributor.institutionUniv Fed Parana
dc.contributor.institutionFed Univ South Bahia
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionMato Grosso State Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:47:50Z
dc.date.available2020-12-10T19:47:50Z
dc.date.issued2019-10-01
dc.description.abstractThe aim of this study was to explore methods to: (1) enhance coarse-scale estimates of wood volume from National Forest Inventories (NFIs) data and (2) map them at finer scales. The 'standard' coarse-scale estimation extrapolates wood volume from clusters to the grid cell they represent, using the cluster's represented forested area (RFA) to predict the cell's forested area. Data from a subset of Brazil's NFI clusters were combined with Landsat-8 imagery to explore a new coarse-scale method, where forested area derived from image classification (FADIC) is used instead of RFA. The RFA- and FADIC-derived estimates of total volume were, respectively, 197.4 million m(3) and 116.3 million m(3). For fine-scale methods, volume was estimated and mapped at pixel level using: (i) surface reflectance-based models (SRMs), and (ii) regression-kriging (RK) and a RK model (RKM) whose inputs were latitude and longitude of pixels. The SRM-based method captured the mean and the general spatial trend of the volume well. The RK-based method also estimated the mean well, but it failed to predict higher and lower volumes. The SRM- and RK-based estimates of total volume were 211.7 million m(3) and 203.3 million m(3), an overestimate of 7 per cent and 3 per cent, respectively, of the 'standard' NFI estimate (197.4 million m(3)), though both estimates were within the 95 per cent confidence interval, meaning that both fine-scale methods yield total volume statistically similar to the 'standard' coarse-scale method.en
dc.description.affiliationRural Fed Univ Amazonia, Dept Forestry, Presidente Tancredo Neves Ave 2501, Belem, PA, Brazil
dc.description.affiliationMichigan State Univ, Dept Forestry, 480 Wilson Rd, E Lansing, MI 48824 USA
dc.description.affiliationUniv Fed Parana, Dept Forestry, Pref Lothario Meissner Ave 900, BR-80210170 Curitiba, PR, Brazil
dc.description.affiliationFed Univ South Bahia, Dept Sci & Agroforestry Technol, Highway 415,Km 22, BR-45653919 Ilheus, BA, Brazil
dc.description.affiliationEmbrapa Forests, Rd Ribeira,Km 111, BR-83411000 Colombo, PR, Brazil
dc.description.affiliationMato Grosso State Univ, Dept Forestry, Perimetral Deputado Rogerio Silva Ave, BR-78580000 Alta Floresta, MT, Brazil
dc.description.affiliationState Univ Sao Paulo, Dept Cartog, Roberto Simonsen St 305, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUnespState Univ Sao Paulo, Dept Cartog, Roberto Simonsen St 305, BR-19060900 Presidente Prudente, SP, Brazil
dc.format.extent577-590
dc.identifierhttp://dx.doi.org/10.1093/forestry/cpz030
dc.identifier.citationForestry. Oxford: Oxford Univ Press, v. 92, n. 5, p. 577-590, 2019.
dc.identifier.doi10.1093/forestry/cpz030
dc.identifier.issn0015-752X
dc.identifier.urihttp://hdl.handle.net/11449/196526
dc.identifier.wosWOS:000509519600007
dc.language.isoeng
dc.publisherOxford Univ Press
dc.relation.ispartofForestry
dc.sourceWeb of Science
dc.titleExploring coarse- to fine-scale approaches for mapping and estimating forest volume from Brazilian National Forest Inventory dataen
dc.typeArtigo
dcterms.licensehttp://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html
dcterms.rightsHolderOxford Univ Press
dspace.entity.typePublication
unesp.departmentCartografia - FCTpt

Arquivos