Publicação: Exploring coarse- to fine-scale approaches for mapping and estimating forest volume from Brazilian National Forest Inventory data
dc.contributor.author | David, Hassan C. | |
dc.contributor.author | MacFarlane, David W. | |
dc.contributor.author | Netto, Sylvio Pellico | |
dc.contributor.author | Dalla Corte, Ana Paula | |
dc.contributor.author | Piotto, Daniel | |
dc.contributor.author | Oliveira, Yeda M. M. de | |
dc.contributor.author | Morais, Vinicius A. | |
dc.contributor.author | Sanquetta, Carlos R. | |
dc.contributor.author | Neto, Rorai P. M. [UNESP] | |
dc.contributor.institution | Rural Fed Univ Amazonia | |
dc.contributor.institution | Michigan State Univ | |
dc.contributor.institution | Univ Fed Parana | |
dc.contributor.institution | Fed Univ South Bahia | |
dc.contributor.institution | Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) | |
dc.contributor.institution | Mato Grosso State Univ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-10T19:47:50Z | |
dc.date.available | 2020-12-10T19:47:50Z | |
dc.date.issued | 2019-10-01 | |
dc.description.abstract | The aim of this study was to explore methods to: (1) enhance coarse-scale estimates of wood volume from National Forest Inventories (NFIs) data and (2) map them at finer scales. The 'standard' coarse-scale estimation extrapolates wood volume from clusters to the grid cell they represent, using the cluster's represented forested area (RFA) to predict the cell's forested area. Data from a subset of Brazil's NFI clusters were combined with Landsat-8 imagery to explore a new coarse-scale method, where forested area derived from image classification (FADIC) is used instead of RFA. The RFA- and FADIC-derived estimates of total volume were, respectively, 197.4 million m(3) and 116.3 million m(3). For fine-scale methods, volume was estimated and mapped at pixel level using: (i) surface reflectance-based models (SRMs), and (ii) regression-kriging (RK) and a RK model (RKM) whose inputs were latitude and longitude of pixels. The SRM-based method captured the mean and the general spatial trend of the volume well. The RK-based method also estimated the mean well, but it failed to predict higher and lower volumes. The SRM- and RK-based estimates of total volume were 211.7 million m(3) and 203.3 million m(3), an overestimate of 7 per cent and 3 per cent, respectively, of the 'standard' NFI estimate (197.4 million m(3)), though both estimates were within the 95 per cent confidence interval, meaning that both fine-scale methods yield total volume statistically similar to the 'standard' coarse-scale method. | en |
dc.description.affiliation | Rural Fed Univ Amazonia, Dept Forestry, Presidente Tancredo Neves Ave 2501, Belem, PA, Brazil | |
dc.description.affiliation | Michigan State Univ, Dept Forestry, 480 Wilson Rd, E Lansing, MI 48824 USA | |
dc.description.affiliation | Univ Fed Parana, Dept Forestry, Pref Lothario Meissner Ave 900, BR-80210170 Curitiba, PR, Brazil | |
dc.description.affiliation | Fed Univ South Bahia, Dept Sci & Agroforestry Technol, Highway 415,Km 22, BR-45653919 Ilheus, BA, Brazil | |
dc.description.affiliation | Embrapa Forests, Rd Ribeira,Km 111, BR-83411000 Colombo, PR, Brazil | |
dc.description.affiliation | Mato Grosso State Univ, Dept Forestry, Perimetral Deputado Rogerio Silva Ave, BR-78580000 Alta Floresta, MT, Brazil | |
dc.description.affiliation | State Univ Sao Paulo, Dept Cartog, Roberto Simonsen St 305, BR-19060900 Presidente Prudente, SP, Brazil | |
dc.description.affiliationUnesp | State Univ Sao Paulo, Dept Cartog, Roberto Simonsen St 305, BR-19060900 Presidente Prudente, SP, Brazil | |
dc.format.extent | 577-590 | |
dc.identifier | http://dx.doi.org/10.1093/forestry/cpz030 | |
dc.identifier.citation | Forestry. Oxford: Oxford Univ Press, v. 92, n. 5, p. 577-590, 2019. | |
dc.identifier.doi | 10.1093/forestry/cpz030 | |
dc.identifier.issn | 0015-752X | |
dc.identifier.uri | http://hdl.handle.net/11449/196526 | |
dc.identifier.wos | WOS:000509519600007 | |
dc.language.iso | eng | |
dc.publisher | Oxford Univ Press | |
dc.relation.ispartof | Forestry | |
dc.source | Web of Science | |
dc.title | Exploring coarse- to fine-scale approaches for mapping and estimating forest volume from Brazilian National Forest Inventory data | en |
dc.type | Artigo | |
dcterms.license | http://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html | |
dcterms.rightsHolder | Oxford Univ Press | |
dspace.entity.type | Publication | |
unesp.department | Cartografia - FCT | pt |