Logo do repositório
 

On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system

dc.contributor.authorMessias, Marcelo [UNESP]
dc.contributor.authorReinol, Alisson C. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:08:33Z
dc.date.available2018-12-11T17:08:33Z
dc.date.issued2017-04-01
dc.description.abstractWe consider the well-known Sprott A system, which depends on a single real parameter a and, for a= 1 , was shown to present a hidden chaotic attractor. We study the formation of hidden chaotic attractors as well as the formation of nested invariant tori in this system, performing a bifurcation analysis by varying the parameter a. We prove that, for a= 0 , the Sprott A system has a line of equilibria in the z-axis, the phase space is foliated by concentric invariant spheres with two equilibrium points located at the south and north poles, and each one of these spheres is filled by heteroclinic orbits of south pole–north pole type. For a≠ 0 , the spheres are no longer invariant algebraic surfaces and the heteroclinic orbits are destroyed. We do a detailed numerical study for a> 0 small, showing that small nested invariant tori and a limit set, which encompasses these tori and is the α- and ω-limit set of almost all orbits in the phase space, are formed in a neighborhood of the origin. As the parameter a increases, this limit set evolves into a hidden chaotic attractor, which coexists with the nested invariant tori. In particular, we find hidden chaotic attractors for a< 1. Furthermore, we make a global analysis of Sprott A system, including the dynamics at infinity via the Poincaré compactification, showing that for a> 0 , the only orbit which escapes to infinity is the one contained in the z-axis and all other orbits are either homoclinic to a limit set (or to a hidden chaotic attractor, depending on the value of a), or contained on an invariant torus, depending on the initial condition considered.en
dc.description.affiliationDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia – FCT UNESP Univ Estadual Paulista
dc.description.affiliationDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas – IBILCE UNESP Univ Estadual Paulista
dc.description.affiliationUnespDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia – FCT UNESP Univ Estadual Paulista
dc.description.affiliationUnespDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas – IBILCE UNESP Univ Estadual Paulista
dc.format.extent807-821
dc.identifierhttp://dx.doi.org/10.1007/s11071-016-3277-0
dc.identifier.citationNonlinear Dynamics, v. 88, n. 2, p. 807-821, 2017.
dc.identifier.doi10.1007/s11071-016-3277-0
dc.identifier.file2-s2.0-85006873338.pdf
dc.identifier.issn1573-269X
dc.identifier.issn0924-090X
dc.identifier.lattes3757225669056317
dc.identifier.scopus2-s2.0-85006873338
dc.identifier.urihttp://hdl.handle.net/11449/173965
dc.language.isoeng
dc.relation.ispartofNonlinear Dynamics
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectHidden chaotic attractor
dc.subjectHomoclinic and heteroclinic orbits
dc.subjectInvariant algebraic surfaces
dc.subjectNested invariant tori
dc.subjectSprott A system
dc.titleOn the formation of hidden chaotic attractors and nested invariant tori in the Sprott A systemen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes3757225669056317
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática e Computação - FCTpt
unesp.departmentMatemática - IBILCEpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85006873338.pdf
Tamanho:
4.05 MB
Formato:
Adobe Portable Document Format
Descrição: