Logo do repositório

Self-calibrated convolution towards glioma segmentation

dc.contributor.authorSalvagnini, Felipe C. R.
dc.contributor.authorBarbosa, Gerson O.
dc.contributor.authorFalcao, Alexandre X. [UNESP]
dc.contributor.authorSantos, Cid A. N.
dc.contributor.institutionComputational Photography Department (DFC)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:12:32Z
dc.date.issued2023-01-01
dc.description.abstractAccurate brain tumor segmentation in the early stages of the disease is crucial for the treatment's effectiveness, avoiding exhaustive visual inspection of a qualified specialist on 3D MR brain images of multiple protocols (e.g., T1, T2, T2-FLAIR, T1-Gd). Several networks exist for Glioma segmentation, being nnU-Net one of the best. In this work, we evaluate self-calibrated convolutions in different parts of the nnU-Net network to demonstrate that self-calibrated modules in skip connections can significantly improve the enhanced-tumor and tumor-core segmentation accuracy while preserving the wholetumor segmentation accuracy.en
dc.description.affiliationEldorado Institute Computational Photography Department (DFC)
dc.description.affiliationState University of Campinas (UNICAMP)
dc.description.affiliationSão Paulo State University (UNESP)
dc.description.affiliationUnespSão Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1109/SIPAIM56729.2023.10373517
dc.identifier.citationProceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023.
dc.identifier.doi10.1109/SIPAIM56729.2023.10373517
dc.identifier.scopus2-s2.0-85183465364
dc.identifier.urihttps://hdl.handle.net/11449/308428
dc.language.isoeng
dc.relation.ispartofProceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023
dc.sourceScopus
dc.subject3D Image Segmentation
dc.subjectMedical Image Analysis
dc.subjectNeural Networks
dc.titleSelf-calibrated convolution towards glioma segmentationen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções