Logo do repositório

A Systematic Literature Review on Prioritizing Software Test Cases Using Markov Chains

dc.contributor.authorBarbosa, G. [UNESP]
dc.contributor.authorSouza,
dc.contributor.authorRebelo, L.
dc.contributor.authorSilva, M.
dc.contributor.authorBalera, J.
dc.contributor.authorVijaykumar, N.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais - INPE
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná - UTFPR
dc.contributor.institutionCiência e Tecnologia de São Paulo - IFSP
dc.contributor.institutionGran Sasso Science Institute - GSSI
dc.date.accessioned2025-04-29T20:09:09Z
dc.date.issued2023-01-01
dc.description.abstractSoftware Testing is a costly activity since the size of the test case set tends to increase as the construction of the software evolves. Test Case Prioritization (TCP) can reduce the effort and cost of software testing. TCP is an activity where a subset of the existing test cases is selected in order to maximize the possibility of finding defects. On the other hand, Markov chains representing a system, when solved, can present the occupation time of each of their states. The idea is to use such information and associate priority to those test cases that consist of states with the highest probabilities. This journal-first paper provides an overview of a systematic survey of the state-of-the-art to identify and understand key initiatives for using Markov chains in TCP.en
dc.description.affiliationUniversidade Estadual Paulista - Unesp
dc.description.affiliationInstituto Nacional de Pesquisas Espaciais - INPE
dc.description.affiliationUniversidade Tecnológica Federal do Paraná - UTFPR
dc.description.affiliationInstituto Federal de Educação Ciência e Tecnologia de São Paulo - IFSP
dc.description.affiliationGran Sasso Science Institute - GSSI
dc.description.affiliationUnespUniversidade Estadual Paulista - Unesp
dc.format.extent179-182
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-43240-8_20
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14131 LNCS, p. 179-182.
dc.identifier.doi10.1007/978-3-031-43240-8_20
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85174443983
dc.identifier.urihttps://hdl.handle.net/11449/307395
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.titleA Systematic Literature Review on Prioritizing Software Test Cases Using Markov Chainsen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-1147-2519[1]
unesp.author.orcid0000-0002-5193-6218[3]
unesp.author.orcid0000-0002-6413-7888[4]
unesp.author.orcid0000-0001-6481-5362[5]
unesp.author.orcid0000-0002-9025-0841[6]

Arquivos

Coleções