Logotipo do repositório
 

Publicação:
Towards vegetation species discrimination by using data-driven descriptors

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.

Descrição

Palavras-chave

Deep Learning, Remote Sensing, Feature Learning, Image Classification, Machine Learning, High-resolution Images

Idioma

Inglês

Como citar

2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação