Publicação: Towards vegetation species discrimination by using data-driven descriptors
dc.contributor.author | Nogueira, Keiller | |
dc.contributor.author | Santos, Jefersson A. dos | |
dc.contributor.author | Fornazari, Tamires [UNESP] | |
dc.contributor.author | Freire Silva, Thiago Sanna [UNESP] | |
dc.contributor.author | Morellato, Leonor Patrícia Cerdeira [UNESP] | |
dc.contributor.author | Torres, Ricardo da S. | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Federal de Minas Gerais (UFMG) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2018-11-28T12:40:20Z | |
dc.date.available | 2018-11-28T12:40:20Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets. | en |
dc.description.affiliation | Univ Fed Minas Gerais UFMG, Dept Comp Sci, BR-31270010 Belo Horizonte, MG, Brazil | |
dc.description.affiliation | Sao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, Brazil | |
dc.description.affiliation | Univ Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 449638/2014-6 | |
dc.description.sponsorshipId | FAPEMIG: APQ-00768-14 | |
dc.description.sponsorshipId | FAPESP: 2013/50169-1 | |
dc.description.sponsorshipId | FAPESP: 2013/50155-0 | |
dc.format.extent | 6 | |
dc.identifier.citation | 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016. | |
dc.identifier.issn | 2377-0198 | |
dc.identifier.uri | http://hdl.handle.net/11449/165616 | |
dc.identifier.wos | WOS:000402041100013 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs) | |
dc.rights.accessRights | Acesso aberto | pt |
dc.source | Web of Science | |
dc.subject | Deep Learning | |
dc.subject | Remote Sensing | |
dc.subject | Feature Learning | |
dc.subject | Image Classification | |
dc.subject | Machine Learning | |
dc.subject | High-resolution Images | |
dc.title | Towards vegetation species discrimination by using data-driven descriptors | en |
dc.type | Trabalho apresentado em evento | pt |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro | pt |
unesp.department | Botânica - IB | pt |