Logotipo do repositório
 

Publicação:
Towards vegetation species discrimination by using data-driven descriptors

dc.contributor.authorNogueira, Keiller
dc.contributor.authorSantos, Jefersson A. dos
dc.contributor.authorFornazari, Tamires [UNESP]
dc.contributor.authorFreire Silva, Thiago Sanna [UNESP]
dc.contributor.authorMorellato, Leonor Patrícia Cerdeira [UNESP]
dc.contributor.authorTorres, Ricardo da S.
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-28T12:40:20Z
dc.date.available2018-11-28T12:40:20Z
dc.date.issued2016-01-01
dc.description.abstractIn this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.en
dc.description.affiliationUniv Fed Minas Gerais UFMG, Dept Comp Sci, BR-31270010 Belo Horizonte, MG, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUniv Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 449638/2014-6
dc.description.sponsorshipIdFAPEMIG: APQ-00768-14
dc.description.sponsorshipIdFAPESP: 2013/50169-1
dc.description.sponsorshipIdFAPESP: 2013/50155-0
dc.format.extent6
dc.identifier.citation2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.
dc.identifier.issn2377-0198
dc.identifier.urihttp://hdl.handle.net/11449/165616
dc.identifier.wosWOS:000402041100013
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs)
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectDeep Learning
dc.subjectRemote Sensing
dc.subjectFeature Learning
dc.subjectImage Classification
dc.subjectMachine Learning
dc.subjectHigh-resolution Images
dc.titleTowards vegetation species discrimination by using data-driven descriptorsen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos