Publicação: Um estuo dos modelos da geometria hiperbólica
Carregando...
Arquivos
Data
2015-08-24
Autores
Orientador
Seixas, Wladimir 

Coorientador
Pós-graduação
Matemática Universitária - IGCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (inglês)
The aim of this dissertation is to introduce the main concepts and results of hyperbolic geometry including the non-existence of rectangles. This statement is one of the many di erences between Euclidean geometry and Hyperbolic geometry from the negation of the Fifth Axiom of Euclid or as it is known, the Axiom of parallel of Euclid. In the nal part of this work we shall cover three main models of Hyperbolic Geometry: Beltrami-Klein, Poincaré Disk and the Poincaré Half Plane. We also demonstrate that these models are isomorphic
Resumo (português)
Esta dissertação tem como objetivo introduzir os conceitos e os principais resultados da Geometria Hiperbólica, entre eles a não existência de retângulos. Verifica-se assim que as diferenças entre as geometrias euclidiana e hiperbólica se dá pela negação do Quinto Axioma de Euclides ou, como é conhecido, o Axioma das paralelas de Euclides. Na parte final deste trabalho abordaremos três principais modelos da Geometria Hiperb ólica: o Disco de Beltrami-Klein, o Disco de Poincaré e o Semiplano de Poincaré. Demonstraremos também que estes modelos são isomorfos
Descrição
Palavras-chave
Idioma
Português
Como citar
MAGALHÃES, José Messias. Um estuo dos modelos da geometria hiperbólica. 2015. 62 f. Dissertação - (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2015.