Publication: Objective and subjective prior distributions for the gompertz distribution
Loading...
Date
Authors
Advisor
Coadvisor
Graduate program
Undergraduate course
Journal Title
Journal ISSN
Volume Title
Publisher
Type
Article
Access right
Acesso aberto

Abstract
This paper takes into account the estimation for the unknown parameters of the Gompertz distribution from the frequentist and Bayesian view points by using both objective and subjective prior distributions. We first derive non-informative priors using formal rules, such as Jefreys prior and maximal data information prior (MDIP), based on Fisher information and entropy, respectively. We also propose a prior distribution that incorporate the expert’s knowledge about the issue under study. In this regard, we assume two independent gamma distributions for the parameters of the Gompertz distribution and it is employed for an elicitation process based on the predictive prior distribution by using Laplace approximation for integrals. We suppose that an expert can summarize his/her knowledge about the reliability of an item through statements of percentiles. We also present a set of priors proposed by Singpurwala assuming a truncated normal prior distribution for the median of distribution and a gamma prior for the scale parameter. Next, we investigate the effects of these priors in the posterior estimates of the parameters of the Gompertz distribution. The Bayes estimates are computed using Markov Chain Monte Carlo (MCMC) algorithm. An extensive numerical simulation is carried out to evaluate the performance of the maximum likelihood estimates and Bayes estimates based on bias, mean-squared error and coverage probabilities. Finally, a real data set have been analyzed for illustrative purposes.
Description
Keywords
Elicitation, Gompertz distribution, Jeffreys prior, Maximal data information prior, Objective prior, Subjective prior
Language
English
Citation
Anais da Academia Brasileira de Ciencias, v. 90, n. 3, p. 2643-2661, 2018.