Logo do repositório
 

Particle competition and cooperation for semi-supervised learning with label noise

dc.contributor.authorBreve, Fabricio A. [UNESP]
dc.contributor.authorZhao, Liang
dc.contributor.authorQuiles, Marcos G.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2015-10-21T20:14:32Z
dc.date.available2015-10-21T20:14:32Z
dc.date.issued2015-07-21
dc.description.abstractSemi-supervised learning methods are usually employed in the classification of data sets where only a small subset of the data items is labeled. In these scenarios, label noise is a crucial issue, since the noise may easily spread to a large portion or even the entire data set, leading to major degradation in classification accuracy. Therefore, the development of new techniques to reduce the nasty effects of label noise in semi-supervised learning is a vital issue. Recently, a graph-based semi-supervised learning approach based on particle competition and cooperation was developed. In this model, particles walk in the graphs constructed from the data sets. Competition takes place among particles representing different class labels, while the cooperation occurs among particles with the same label. This paper presents a new particle competition and cooperation algorithm, specifically designed to increase the robustness to the presence of label noise, improving its label noise tolerance. Different from other methods, the proposed one does not require a separate technique to deal with label noise. It performs classification of unlabeled nodes and reclassification of the nodes affected by label noise in a unique process. Computer simulations show the classification accuracy of the proposed method when applied to some artificial and real-world data sets, in which we introduce increasing amounts of label noise. The classification accuracy is compared to those achieved by previous particle competition and cooperation algorithms and other representative graph-based semi-supervised learning methods using the same scenarios. Results show the effectiveness of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ UNESP, Inst Geosci &Exact Sci IGCE, Dept Stat Appl Math &Computat DEMAC, BR-13506900 Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Sch Philosophy Sci &Literature Ribeirao Preto FF, Dept Comp Sci &Math DCM, BR-14040900 Sao Paulo, Brazil
dc.description.affiliationFed Univ Sao Paulo Unifesp, Inst Sci &Technol ICT, Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Inst Geosci & Exact Sci IGCE, Dept Stat Appl Math & Computat DEMAC, BR-13506900 Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2011/17396-9
dc.description.sponsorshipIdFAPESP: 2011/18496-7
dc.description.sponsorshipIdFAPESP: 2011/50151-0
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdCNPq: 475717/2013-9
dc.description.sponsorshipIdCNPq: 308428/2012-9
dc.description.sponsorshipIdCNPq: 306227/2011-8
dc.format.extent63-72
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0925231215001277
dc.identifier.citationNeurocomputing, v. 160, p. 63-72, 2015.
dc.identifier.doi10.1016/j.neucom.2014.08.082
dc.identifier.issn0925-2312
dc.identifier.lattes5693860025538327
dc.identifier.orcid0000-0002-1123-9784
dc.identifier.urihttp://hdl.handle.net/11449/129032
dc.identifier.wosWOS:000354139100006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofNeurocomputing
dc.relation.ispartofjcr3.241
dc.relation.ispartofsjr1,073
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectLabel noiseen
dc.subjectSemi-supervised learningen
dc.subjectParticle competition and cooperationen
dc.titleParticle competition and cooperation for semi-supervised learning with label noiseen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes5693860025538327
unesp.author.orcid0000-0002-1123-9784[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos