Publicação: Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
dc.contributor.author | Martin Lanzoni, Evandro [UNESP] | |
dc.contributor.author | Covre Da Silva, Saimon F. | |
dc.contributor.author | Knopper, Matthijn Floris | |
dc.contributor.author | Garcia, Ailton J | |
dc.contributor.author | Costa, Carlos Alberto Rodrigues | |
dc.contributor.author | Deneke, Christoph | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Brazilian Center for Research in Energy and Materials (CNPEM) | |
dc.contributor.institution | Physics and Materials Science Research Unit | |
dc.contributor.institution | Universidade Federal de Viçosa (UFV) | |
dc.contributor.institution | Eindhoven University of Technology (TU/e) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2022-04-28T19:50:17Z | |
dc.date.available | 2022-04-28T19:50:17Z | |
dc.date.issued | 2022-04-16 | |
dc.description.abstract | Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect. | en |
dc.description.affiliation | Sao Paulo State University (UNESP) Institute of Science and Technology | |
dc.description.affiliation | Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) | |
dc.description.affiliation | University of Luxembourg Physics and Materials Science Research Unit | |
dc.description.affiliation | Universidade Federal de Vicosa (UFV) Departamento de Física | |
dc.description.affiliation | Eindhoven University of Technology (TU/e) Department of Applied Physics | |
dc.description.affiliation | Universidade Estadual de Campinas Instituto de Física 'Gleb Wataghin' | |
dc.description.affiliationUnesp | Sao Paulo State University (UNESP) Institute of Science and Technology | |
dc.identifier | http://dx.doi.org/10.1088/1361-6528/ac47ce | |
dc.identifier.citation | Nanotechnology, v. 33, n. 16, 2022. | |
dc.identifier.doi | 10.1088/1361-6528/ac47ce | |
dc.identifier.issn | 1361-6528 | |
dc.identifier.issn | 0957-4484 | |
dc.identifier.scopus | 2-s2.0-85123878559 | |
dc.identifier.uri | http://hdl.handle.net/11449/223385 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nanotechnology | |
dc.source | Scopus | |
dc.subject | electrical characterization | |
dc.subject | Kelvin probe force microscopy (KPFM) | |
dc.subject | mesoscopic GaAs structures | |
dc.subject | unstrained quantum dots | |
dc.title | Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0001-9784-0935 0000-0001-9784-0935 0000-0001-9784-0935[1] | |
unesp.author.orcid | 0000-0002-1364-2622 0000-0002-1364-2622[4] | |
unesp.author.orcid | 0000-0002-8556-386X[6] |