Logotipo do repositório
 

Publicação:
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots

dc.contributor.authorMartin Lanzoni, Evandro [UNESP]
dc.contributor.authorCovre Da Silva, Saimon F.
dc.contributor.authorKnopper, Matthijn Floris
dc.contributor.authorGarcia, Ailton J
dc.contributor.authorCosta, Carlos Alberto Rodrigues
dc.contributor.authorDeneke, Christoph
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionBrazilian Center for Research in Energy and Materials (CNPEM)
dc.contributor.institutionPhysics and Materials Science Research Unit
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionEindhoven University of Technology (TU/e)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-28T19:50:17Z
dc.date.available2022-04-28T19:50:17Z
dc.date.issued2022-04-16
dc.description.abstractUnstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.en
dc.description.affiliationSao Paulo State University (UNESP) Institute of Science and Technology
dc.description.affiliationBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)
dc.description.affiliationUniversity of Luxembourg Physics and Materials Science Research Unit
dc.description.affiliationUniversidade Federal de Vicosa (UFV) Departamento de Física
dc.description.affiliationEindhoven University of Technology (TU/e) Department of Applied Physics
dc.description.affiliationUniversidade Estadual de Campinas Instituto de Física 'Gleb Wataghin'
dc.description.affiliationUnespSao Paulo State University (UNESP) Institute of Science and Technology
dc.identifierhttp://dx.doi.org/10.1088/1361-6528/ac47ce
dc.identifier.citationNanotechnology, v. 33, n. 16, 2022.
dc.identifier.doi10.1088/1361-6528/ac47ce
dc.identifier.issn1361-6528
dc.identifier.issn0957-4484
dc.identifier.scopus2-s2.0-85123878559
dc.identifier.urihttp://hdl.handle.net/11449/223385
dc.language.isoeng
dc.relation.ispartofNanotechnology
dc.sourceScopus
dc.subjectelectrical characterization
dc.subjectKelvin probe force microscopy (KPFM)
dc.subjectmesoscopic GaAs structures
dc.subjectunstrained quantum dots
dc.titleImaging the electrostatic landscape of unstrained self-assemble GaAs quantum dotsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-9784-0935 0000-0001-9784-0935 0000-0001-9784-0935[1]
unesp.author.orcid0000-0002-1364-2622 0000-0002-1364-2622[4]
unesp.author.orcid0000-0002-8556-386X[6]

Arquivos

Coleções