Unsupervised Manifold Learning for Video Genre Retrieval
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.
Descrição
Palavras-chave
video genre retrieval, ranking methods, manifold learning
Idioma
Inglês
Citação
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 604-612, 2014.



