Logotipo do repositório
 

Publicação:
κ-Entropy Based Restricted Boltzmann Machines

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Restricted Boltzmann Machines achieved notorious popularity in the scientific community in the last decade due to outstanding results in a wide range of applications and also for providing the required mechanisms to build successful deep learning models, i.e., Deep Belief Networks and Deep Boltzmann Machines. However, their main bottleneck is related to the learning step, which is usually time-consuming. In this paper, we introduce a Sigmoid-like family of functions based on the Kaniadakis entropy formulation in the context of the RBM learning procedure. Experiments concerning binary image reconstruction are conducted in four public datasets to evaluate the robustness of the proposed approach. The results suggest that such a family of functions is suitable to increase the convergence rate when compared to standard functions employed by the research community.

Descrição

Palavras-chave

Kaniadakis Entropy, Machine Learning, Restricted Boltzmann Machines

Idioma

Inglês

Como citar

Proceedings of the International Joint Conference on Neural Networks, v. 2019-July.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação