Logotipo do repositório
 

Publicação:
Venlafaxine-induced adrenergic signaling stimulates Leydig cells steroidogenesis via Nur77 overexpression: A possible role of EGF

dc.contributor.authorde Santi, Fabiane
dc.contributor.authorBeltrame, Flávia L.
dc.contributor.authorRodrigues, Beatriz M. [UNESP]
dc.contributor.authorScaramele, Natália F. [UNESP]
dc.contributor.authorLopes, Flávia L. [UNESP]
dc.contributor.authorCerri, Paulo S. [UNESP]
dc.contributor.authorSasso-Cerri, Estela [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:48:27Z
dc.date.available2022-04-28T19:48:27Z
dc.date.issued2022-01-15
dc.description.abstractVenlafaxine, a norepinephrine and serotonin reuptake inhibitor, impairs rat sperm parameters, spermatogenesis and causes high intratesticular estrogen and testosterone levels, indicating that Leydig cells (LCs) may be a venlafaxine target. We evaluated the effect of venlafaxine treatment on rat LCs, focusing on adrenergic signaling, EGF immunoexpression and steroidogenesis. Germ cells mitotic/meiotic activity and UCHL1 levels were also evaluated in the seminiferous epithelium. Eighteen adult male rats received 30 mg/kg of venlafaxine (n = 9) or distilled water (n = 9). The seminiferous tubules, epithelium and LCs nuclear areas were measured, and the immunoexpression of Ki-67, UCHL1, StAR, EGF, c-Kit and 17β-HSD was evaluated. UCHL1, StAR and EGF protein levels and Adra1a, Nur77 and Ndrg2 expression were analyzed. Malondialdehyde (MDA) and nitrite testicular levels, and serum estrogen and testosterone levels were measured. Venlafaxine induced LCs hypertrophy and Ndrg2 upregulation in parallel to increased number of Ki-67, c-Kit- and 17β-HSD-positive interstitial cells, indicating that this antidepressant stimulates LCs lineage proliferation and differentiation. Upregulation of Adra1a and Nur77 could explain the high levels of StAR and testosterone levels, as well as aromatization. Enhanced EGF immunoexpression in LCs suggests that this growth fact is involved in adrenergically-induced steroidogenesis, likely via upregulation of Nur77. Slight tubular atrophy and weak Ki-67 immunoexpression in germ cells, in association with high UCHL1 levels, indicate that spermatogenesis is likely impaired by this enzyme under supraphysiological estrogen levels. These data corroborate the unchanged MDA and nitrite levels. Therefore, venlafaxine stimulates LCs steroidogenesis via adrenergic signaling, and EGF may be involved in this process.en
dc.description.affiliationFederal University of São Paulo Department of Morphology and Genetics
dc.description.affiliationSão Paulo State University (Unesp) School of Dentistry Department of Morphology Genetics Orthodontics and Pediatric Dentistry
dc.description.affiliationSão Paulo State University (Unesp) School of Veterinary Medicine Department of Production and Animal Health
dc.description.affiliationUnespSão Paulo State University (Unesp) School of Dentistry Department of Morphology Genetics Orthodontics and Pediatric Dentistry
dc.description.affiliationUnespSão Paulo State University (Unesp) School of Veterinary Medicine Department of Production and Animal Health
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/19829-6
dc.description.sponsorshipIdFAPESP: 2018/13590-4
dc.identifierhttp://dx.doi.org/10.1016/j.lfs.2021.120069
dc.identifier.citationLife Sciences, v. 289.
dc.identifier.doi10.1016/j.lfs.2021.120069
dc.identifier.issn1879-0631
dc.identifier.issn0024-3205
dc.identifier.scopus2-s2.0-85121425858
dc.identifier.urihttp://hdl.handle.net/11449/223077
dc.language.isoeng
dc.relation.ispartofLife Sciences
dc.sourceScopus
dc.subjectAntidepressant
dc.subjectEGF
dc.subjectEstrogen
dc.subjectSNRI
dc.subjectSpermatogenesis
dc.subjectUCHL1
dc.titleVenlafaxine-induced adrenergic signaling stimulates Leydig cells steroidogenesis via Nur77 overexpression: A possible role of EGFen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Araçatubapt

Arquivos