Hybrid structure combining essential oil derivatives and polydopamine for anti-bacterial coatings
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The development of effective antimicrobial surfaces is crucial for reducing the risk of medical device-associated infections. This study investigates the antibacterial potential of carvacrol (CAR), a natural essential oil, after their surface immobilization onto gold (Au) substrates through a polydopamine (pDA) layer. The successful deposition and properties of each layer were characterized using ellipsometry, water contact angle (WCA) measurements, Fourier Transform Infrared Reflection-Absorption Spectroscopy (FT-IRRAS), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). The resulting coatings displayed a thin, uniform film with smooth topography and with enhanced hydrophilicity. Antibacterial efficacy was assessed against Staphylococcus epidermidis, a relevant etiological agent in this context. The results revealed that the polydopamine-carvacrol coated surfaces (Au-pDA-CAR) exhibited a significant reduction in bacterial viability, achieving a 96 % decrease compared to unmodified gold surfaces. This was contrasted with minimal antibacterial activity from surfaces with either only polydopamine (Au-pDA) or carvacrol (Au-CAR). Live/Dead bacterial viability assays confirmed the bactericidal effect of the Au-pDA-CAR surface, demonstrating its effectiveness in killing bacteria rather than merely preventing adhesion. Our findings indicate that the pDA-CAR coating presents a promising approach for developing antimicrobial surfaces with enhanced performance against biofilm-forming pathogens. The development of this coating is an important step towards the establishment of a new technological platform capable of preventing medical device associated infections.
Descrição
Palavras-chave
Antibacterial surfaces, Carvacrol, Essential oil, Medical device associated-infections, Polydopamine, Surface characterization, Surface modification
Idioma
Inglês
Citação
Colloids and Surfaces B: Biointerfaces, v. 252.




