Logotipo do repositório
 

Publicação:
Using consensus mapping methods as an efficient way of depicting avian distributions in the Caatinga Dry Forest, a poorly known Neotropical biome

dc.contributor.authorLeandro-Silva, Victor
dc.contributor.authorSilva, Marcos Vinicius Alexandre da
dc.contributor.authorPinto, Flávia Santos [UNESP]
dc.contributor.authorNaka, Luciano Nicolás
dc.contributor.institutionUniversidade Federal Rural de Pernambuco–UFRPE
dc.contributor.institutionUniversidade Federal de Pernambuco (UFPE)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-01T20:24:22Z
dc.date.available2023-03-01T20:24:22Z
dc.date.issued2022-01-01
dc.description.abstractMapping species distributions has become central for biodiversity research. Different mapping methods, however, may result in dramatically different spatial patterns. We used expert-drawn maps (EDMs), minimum convex polygons (MCPs), ecological niche models (ENMs), and consensus models, to compare patterns of species ranges and species richness in 12 species of Psittacidae in a poorly known Neotropical ecosystem, the Caatinga Dry Forest. We validated results by comparing the ability of each method to predict the number of Psittacidae species in 17 localities with well-studied avifaunas. Size ranges were highly correlated (from 0.7 to 0.9) among mapping methods, but presented critical spatial differences, which resulted in very different patterns of species richness. When confronted with real data, MCPs and the EDM/MCP consensus method, both correctly predicted the presence of ~ 90% of the species present in the studied areas. However, when taking commission errors into account, MCPs presented the lowest efficiency (56%) among all methods. All three consensus methods (ENM/EDM, ENM/MCP, and EDM/MCP) performed better (> 74% efficiency) than any single method. We conclude that single mapping methods are prone to both higher omission and commission errors, and advocate for the use of consensus methods whenever species ranges will be used in macroecological studies.en
dc.description.affiliationPrograma de Pós-graduação em Etnobiologia e Conservação da Natureza Universidade Federal Rural de Pernambuco–UFRPE, PA
dc.description.affiliationLaboratório de Ecologia & Evolução de Aves Departamento de Zoologia Universidade Federal de Pernambuco–UFPE, PE
dc.description.affiliationLaboratório de Ecologia Espacial e Conservação–LEEC Departamento de Ecologia Universidade Estadual Paulista–UNESP, SP
dc.description.affiliationUnespLaboratório de Ecologia Espacial e Conservação–LEEC Departamento de Ecologia Universidade Estadual Paulista–UNESP, SP
dc.identifierhttp://dx.doi.org/10.1007/s43388-022-00101-5
dc.identifier.citationOrnithology Research.
dc.identifier.doi10.1007/s43388-022-00101-5
dc.identifier.issn2662-673X
dc.identifier.scopus2-s2.0-85135468250
dc.identifier.urihttp://hdl.handle.net/11449/240597
dc.language.isoeng
dc.relation.ispartofOrnithology Research
dc.sourceScopus
dc.subjectCaatinga
dc.subjectMapping methods
dc.subjectParrots
dc.subjectSpecies ranges
dc.subjectSpecies richness
dc.titleUsing consensus mapping methods as an efficient way of depicting avian distributions in the Caatinga Dry Forest, a poorly known Neotropical biomeen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-9985-5532[1]
unesp.author.orcid0000-0003-3615-7109[3]
unesp.author.orcid0000-0002-7716-3401[4]

Arquivos

Coleções