Publicação: The analytic torsion of a disc
dc.contributor.author | de Melo, T. [UNESP] | |
dc.contributor.author | Hartmann, L. | |
dc.contributor.author | Spreafico, M. | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.date.accessioned | 2013-09-30T18:51:19Z | |
dc.date.accessioned | 2014-05-20T14:17:07Z | |
dc.date.available | 2013-09-30T18:51:19Z | |
dc.date.available | 2014-05-20T14:17:07Z | |
dc.date.issued | 2012-06-01 | |
dc.description.abstract | In this article, we study the Reidemeister torsion and the analytic torsion of the m dimensional disc, with the Ray and Singer homology basis (Adv Math 7:145-210, 1971). We prove that the Reidemeister torsion coincides with a power of the volume of the disc. We study the additional terms arising in the analytic torsion due to the boundary, using generalizations of the Cheeger-Muller theorem. We use a formula proved by Bruning and Ma (GAFA 16:767-873, 2006) that predicts a new anomaly boundary term beside the known term proportional to the Euler characteristic of the boundary (Luck, J Diff Geom 37:263-322, 1993). Some of our results extend to the case of the cone over a sphere, in particular we evaluate directly the analytic torsion for a cone over the circle and over the two sphere. We compare the results obtained in the low dimensional cases. We also consider a different formula for the boundary term given by Dai and Fang (Asian J Math 4:695-714, 2000), and we compare the results. The results of these work were announced in the study of Hartmann et al. (BUMI 2:529-533, 2009). | en |
dc.description.affiliation | Univ São Paulo, ICMC, São Carlos, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Rio Claro, Brazil | |
dc.description.affiliation | Universidade Federal de São Carlos (UFSCar), UFSCar, BR-13560 São Carlos, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Rio Claro, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 10/16660-1 | |
dc.description.sponsorshipId | FAPESP: 08/57607-6 | |
dc.format.extent | 29-59 | |
dc.identifier | http://dx.doi.org/10.1007/s10455-011-9300-2 | |
dc.identifier.citation | Annals of Global Analysis and Geometry. Dordrecht: Springer, v. 42, n. 1, p. 29-59, 2012. | |
dc.identifier.doi | 10.1007/s10455-011-9300-2 | |
dc.identifier.issn | 0232-704X | |
dc.identifier.uri | http://hdl.handle.net/11449/25133 | |
dc.identifier.wos | WOS:000303345300002 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Annals of Global Analysis and Geometry | |
dc.relation.ispartofjcr | 0.774 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Analytic torsion | en |
dc.subject | Reidemeister torsion | en |
dc.subject | Functional determinant | en |
dc.title | The analytic torsion of a disc | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0003-4854-9193[2] | |
unesp.author.orcid | 0000-0001-8834-6273[3] |
Arquivos
Licença do Pacote
1 - 2 de 2
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: