Logotipo do repositório
 

Publicação:
Malware Detection in Android-based Mobile Environments using Optimum-Path Forest

dc.contributor.authorCosta, Kelton A. P. da [UNESP]
dc.contributor.authorSilva, Luis A. da [UNESP]
dc.contributor.authorMartins, Guilherme B. [UNESP]
dc.contributor.authorRosa, Gustavo H. [UNESP]
dc.contributor.authorPereira, Clayton R. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T16:48:32Z
dc.date.available2018-11-26T16:48:32Z
dc.date.issued2015-01-01
dc.description.abstractNowadays, people use smartphones and tablets with the very same purposes as desktop computers: web browsing, social networking and home-banking, just to name a few. However, we are often facing the problem of keeping our information protected and trustworthy. As a result of their popularity and functionality, mobile devices are a growing target for malicious activities. In such context, mobile malwares have gained significant ground since the emergence and growth of smartphones and handheld devices, becoming a real threat. In this paper, we introduced a recently developed pattern recognition technique called Optimum-Path Forest in the context of malware detection, as well we present DroidWare, a new public dataset to foster the research on mobile malware detection. In addition, we also proposed to use Restricted Boltzmann Machines for unsupervised feature learning in the context of malware identification.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.format.extent754-759
dc.identifierhttp://dx.doi.org/10.1109/ICMLA.2015.72
dc.identifier.citation2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 754-759, 2015.
dc.identifier.doi10.1109/ICMLA.2015.72
dc.identifier.urihttp://hdl.handle.net/11449/161766
dc.identifier.wosWOS:000380483600136
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartof2015 Ieee 14th International Conference On Machine Learning And Applications (icmla)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest
dc.subjectRestricted Boltzmann Machines
dc.subjectMalware Detection
dc.titleMalware Detection in Android-based Mobile Environments using Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos