Logo do repositório

Application of confocal laser microscopy for identification of modern and fossil pollen grains, an example in palm Mauritiinae

dc.contributor.authorCollevatti, Rosane G. [UNESP]
dc.contributor.authorCastañeda, Marcela
dc.contributor.authorSilva-Caminha, Silane A.F.
dc.contributor.authorJaramillo, Carlos
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.contributor.institutionSmithsonian Tropical Research Institute
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Mato Grosso
dc.date.accessioned2025-04-29T20:12:39Z
dc.date.issued2024-08-01
dc.description.abstractConfocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including Lepidocaryum tenue Mart., Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret and Mauritiella aculeata (Kunth) Burret were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of Grimsdalea magnaclavata Germeraad et al. 1968, and Mauritiidites franciscoi (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and Mauritia pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies.en
dc.description.affiliationLaboratório de Genética & Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás, GO
dc.description.affiliationSmithsonian Tropical Research Institute, Balboa
dc.description.affiliationSpatial Ecology and Conservation Lab (LEEC) Department of Biodiversity São Paulo State University, Rio Claro
dc.description.affiliationFaculdade de Geociências Universidade Federal de Mato Grosso
dc.description.affiliationUnespSpatial Ecology and Conservation Lab (LEEC) Department of Biodiversity São Paulo State University, Rio Claro
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipSmithsonian Tropical Research Institute
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2022/10760-1
dc.identifierhttp://dx.doi.org/10.1016/j.revpalbo.2024.105140
dc.identifier.citationReview of Palaeobotany and Palynology, v. 327.
dc.identifier.doi10.1016/j.revpalbo.2024.105140
dc.identifier.issn0034-6667
dc.identifier.scopus2-s2.0-85196194913
dc.identifier.urihttps://hdl.handle.net/11449/308501
dc.language.isoeng
dc.relation.ispartofReview of Palaeobotany and Palynology
dc.sourceScopus
dc.subjectArecaceae
dc.subjectCART
dc.subjectImageJ
dc.subjectLepidocaryeae
dc.subjectPaleontology
dc.subjectPalynology
dc.subjectRandom forests
dc.subjectSpecies assignment
dc.titleApplication of confocal laser microscopy for identification of modern and fossil pollen grains, an example in palm Mauritiinaeen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções