Logotipo do repositório
 

Publicação:
Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks

dc.contributor.authorTorrecilha, Rafaela Beatriz Pintor [UNESP]
dc.contributor.authorUtsunomiya, Yuri Tani [UNESP]
dc.contributor.authorBatista, Luís Fábio da Silva
dc.contributor.authorBosco, Anelise Maria [UNESP]
dc.contributor.authorNunes, Cáris Maroni [UNESP]
dc.contributor.authorCiarlini, Paulo César [UNESP]
dc.contributor.authorLaurenti, Márcia Dalastra
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T17:08:34Z
dc.date.available2018-12-11T17:08:34Z
dc.date.issued2017-01-30
dc.description.abstractQuantification of Leishmania infantum load via real-time quantitative polymerase chain reaction (qPCR) in lymph node aspirates is an accurate tool for diagnostics, surveillance and therapeutics follow-up in dogs with leishmaniasis. However, qPCR requires infrastructure and technical training that is not always available commercially or in public services. Here, we used a machine learning technique, namely Radial Basis Artificial Neural Network, to assess whether parasite load could be learned from clinical data (serological test, biochemical markers and physical signs). By comparing 18 different combinations of input clinical data, we found that parasite load can be accurately predicted using a relatively small reference set of 35 naturally infected dogs and 20 controls. In the best case scenario (use of all clinical data), predictions presented no bias or inflation and an accuracy (i.e., correlation between true and predicted values) of 0.869, corresponding to an average error of ±38.2 parasites per unit of volume. We conclude that reasonable estimates of L. infantum load from lymph node aspirates can be obtained from clinical records when qPCR services are not available.en
dc.description.affiliationSão Paulo State University (Unesp). School of Veterinary Medicine Araçatuba. Department of Clinics Surgery and Animal Reproduction
dc.description.affiliationSão Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal Department of Preventative Veterinary Medicine and Animal Reproduction
dc.description.affiliationUSP − Universidade de São Paulo Departamento de Patologia Veterinária Faculdade de Medicina Veterinária e Zootecnia
dc.description.affiliationSão Paulo State University (Unesp) School of Veterinary Medicine Araçatuba Department of Support Production and Animal Health
dc.description.affiliationUnespSão Paulo State University (Unesp). School of Veterinary Medicine Araçatuba. Department of Clinics Surgery and Animal Reproduction
dc.description.affiliationUnespSão Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal Department of Preventative Veterinary Medicine and Animal Reproduction
dc.description.affiliationUnespSão Paulo State University (Unesp) School of Veterinary Medicine Araçatuba Department of Support Production and Animal Health
dc.format.extent13-18
dc.identifierhttp://dx.doi.org/10.1016/j.vetpar.2016.12.016
dc.identifier.citationVeterinary Parasitology, v. 234, p. 13-18.
dc.identifier.doi10.1016/j.vetpar.2016.12.016
dc.identifier.file2-s2.0-85007029631.pdf
dc.identifier.issn1873-2550
dc.identifier.issn0304-4017
dc.identifier.lattes3613940018299500
dc.identifier.orcid0000-0003-1480-5208
dc.identifier.scopus2-s2.0-85007029631
dc.identifier.urihttp://hdl.handle.net/11449/173972
dc.language.isoeng
dc.relation.ispartofVeterinary Parasitology
dc.relation.ispartofsjr1,275
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCanis lupus familiaris
dc.subjectLeishmania spp.
dc.subjectMachine learning
dc.subjectqPCR
dc.titlePrediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networksen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes3613940018299500[6]
unesp.author.lattes1892359871207408[5]
unesp.author.orcid0000-0003-1480-5208[6]
unesp.author.orcid0000-0002-5463-3845[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Araçatubapt
unesp.departmentMedicina Veterinária Preventiva e Reprodução Animal - FCAVpt
unesp.departmentClínica, Cirurgia e Reprodução Animal - FMVApt
unesp.departmentApoio, Produção e Saúde Animal - FMVApt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85007029631.pdf
Tamanho:
563.54 KB
Formato:
Adobe Portable Document Format
Descrição: