Publicação: Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks
dc.contributor.author | Torrecilha, Rafaela Beatriz Pintor [UNESP] | |
dc.contributor.author | Utsunomiya, Yuri Tani [UNESP] | |
dc.contributor.author | Batista, Luís Fábio da Silva | |
dc.contributor.author | Bosco, Anelise Maria [UNESP] | |
dc.contributor.author | Nunes, Cáris Maroni [UNESP] | |
dc.contributor.author | Ciarlini, Paulo César [UNESP] | |
dc.contributor.author | Laurenti, Márcia Dalastra | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2018-12-11T17:08:34Z | |
dc.date.available | 2018-12-11T17:08:34Z | |
dc.date.issued | 2017-01-30 | |
dc.description.abstract | Quantification of Leishmania infantum load via real-time quantitative polymerase chain reaction (qPCR) in lymph node aspirates is an accurate tool for diagnostics, surveillance and therapeutics follow-up in dogs with leishmaniasis. However, qPCR requires infrastructure and technical training that is not always available commercially or in public services. Here, we used a machine learning technique, namely Radial Basis Artificial Neural Network, to assess whether parasite load could be learned from clinical data (serological test, biochemical markers and physical signs). By comparing 18 different combinations of input clinical data, we found that parasite load can be accurately predicted using a relatively small reference set of 35 naturally infected dogs and 20 controls. In the best case scenario (use of all clinical data), predictions presented no bias or inflation and an accuracy (i.e., correlation between true and predicted values) of 0.869, corresponding to an average error of ±38.2 parasites per unit of volume. We conclude that reasonable estimates of L. infantum load from lymph node aspirates can be obtained from clinical records when qPCR services are not available. | en |
dc.description.affiliation | São Paulo State University (Unesp). School of Veterinary Medicine Araçatuba. Department of Clinics Surgery and Animal Reproduction | |
dc.description.affiliation | São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal Department of Preventative Veterinary Medicine and Animal Reproduction | |
dc.description.affiliation | USP − Universidade de São Paulo Departamento de Patologia Veterinária Faculdade de Medicina Veterinária e Zootecnia | |
dc.description.affiliation | São Paulo State University (Unesp) School of Veterinary Medicine Araçatuba Department of Support Production and Animal Health | |
dc.description.affiliationUnesp | São Paulo State University (Unesp). School of Veterinary Medicine Araçatuba. Department of Clinics Surgery and Animal Reproduction | |
dc.description.affiliationUnesp | São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal Department of Preventative Veterinary Medicine and Animal Reproduction | |
dc.description.affiliationUnesp | São Paulo State University (Unesp) School of Veterinary Medicine Araçatuba Department of Support Production and Animal Health | |
dc.format.extent | 13-18 | |
dc.identifier | http://dx.doi.org/10.1016/j.vetpar.2016.12.016 | |
dc.identifier.citation | Veterinary Parasitology, v. 234, p. 13-18. | |
dc.identifier.doi | 10.1016/j.vetpar.2016.12.016 | |
dc.identifier.file | 2-s2.0-85007029631.pdf | |
dc.identifier.issn | 1873-2550 | |
dc.identifier.issn | 0304-4017 | |
dc.identifier.lattes | 3613940018299500 | |
dc.identifier.orcid | 0000-0003-1480-5208 | |
dc.identifier.scopus | 2-s2.0-85007029631 | |
dc.identifier.uri | http://hdl.handle.net/11449/173972 | |
dc.language.iso | eng | |
dc.relation.ispartof | Veterinary Parasitology | |
dc.relation.ispartofsjr | 1,275 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Canis lupus familiaris | |
dc.subject | Leishmania spp. | |
dc.subject | Machine learning | |
dc.subject | qPCR | |
dc.title | Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 3613940018299500[6] | |
unesp.author.lattes | 1892359871207408[5] | |
unesp.author.orcid | 0000-0003-1480-5208[6] | |
unesp.author.orcid | 0000-0002-5463-3845[5] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Araçatuba | pt |
unesp.department | Medicina Veterinária Preventiva e Reprodução Animal - FCAV | pt |
unesp.department | Clínica, Cirurgia e Reprodução Animal - FMVA | pt |
unesp.department | Apoio, Produção e Saúde Animal - FMVA | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85007029631.pdf
- Tamanho:
- 563.54 KB
- Formato:
- Adobe Portable Document Format
- Descrição: