Publicação: Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints
dc.contributor.author | Villanueva, Fabiola Roxana | |
dc.contributor.author | Oliveira, Valeriano Antunes de [UNESP] | |
dc.contributor.institution | Universidad Mayor de San Andrés | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2023-03-01T20:14:35Z | |
dc.date.available | 2023-03-01T20:14:35Z | |
dc.date.issued | 2022-09-01 | |
dc.description.abstract | This work addresses interval optimization problems in which the objective function is interval-valued while the constraints are given in functional and abstract forms. The functional constraints are described by means of both inequalities and equalities. The abstract constraint is expressed through a closed and convex set with a nonempty interior. Necessary optimality conditions are derived, given in a multiplier rule structure involving the gH-gradient of the interval objective function along with the (classical) gradients of the constraint functions and the normal cone to the set related to the abstract constraint. The main tool is a specification of the Dubovitskii–Milyutin formalism. We defined an appropriated notion of directions of decrease to an interval-valued function, using the lower–upper partial ordering of the interval space (LU order). | en |
dc.description.affiliation | Universidad Mayor de San Andrés, La Paz | |
dc.description.affiliation | São Paulo State University, São Paulo | |
dc.description.affiliationUnesp | São Paulo State University, São Paulo | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | CNPq: 305786/2018-0 | |
dc.description.sponsorshipId | CAPES: Finance code 001 | |
dc.format.extent | 896-923 | |
dc.identifier | http://dx.doi.org/10.1007/s10957-022-02055-6 | |
dc.identifier.citation | Journal of Optimization Theory and Applications, v. 194, n. 3, p. 896-923, 2022. | |
dc.identifier.doi | 10.1007/s10957-022-02055-6 | |
dc.identifier.issn | 1573-2878 | |
dc.identifier.issn | 0022-3239 | |
dc.identifier.scopus | 2-s2.0-85133293051 | |
dc.identifier.uri | http://hdl.handle.net/11449/240379 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Optimization Theory and Applications | |
dc.source | Scopus | |
dc.subject | Dubovitskii–Milyutin formalism | |
dc.subject | Interval optimization | |
dc.subject | Karush–Kuhn–Tucker | |
dc.subject | Necessary optimality conditions | |
dc.title | Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-4785-8229[1] | |
unesp.author.orcid | 0000-0003-3613-3801[2] |