Logo do repositório

Numerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluids

dc.contributor.authorEvans, J. D.
dc.contributor.authorPalhares Junior, I. L.
dc.contributor.authorOishi, C. M. [UNESP]
dc.contributor.authorRuano Neto, F.
dc.contributor.institutionUniversity of Bath
dc.contributor.institutionUniversidade Federal Do Rio Grande Do Norte
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2023-07-29T13:32:34Z
dc.date.available2023-07-29T13:32:34Z
dc.date.issued2022-11-01
dc.description.abstractWe verify numerically the theoretical stress singularities for two viscoelastic models that occur at sharp corners. The models considered are the Giesekus and Phan-Thien-Tanner (PTT), both of which are shear thinning and are able to capture realistic polymer behaviors. The theoretical asymptotic behavior of these two models at sharp corners has previously been found to involve an integrable solvent and polymer elastic stress singularity, along with narrow elastic stress boundary layers at the walls of the corner. We demonstrate here the validity of these theoretical results through numerical simulation of the classical contraction flow and analyzing the 270 ° corner. Numerical results are presented, verifying both the solvent and polymer stress singularities, as well as the dominant terms in the constitutive equations supporting the elastic boundary layer structures. For comparison at Weissenberg order one, we consider both the Cartesian stress formulation and the alternative natural stress formulation of the viscoelastic constitutive equations. Numerically, it is shown that the natural stress formulation gives increased accuracy and convergence behavior at the stress singularity and, moreover, encounters no upper Weissenberg number limitation in the global flow simulation for sufficiently large solvent viscosity fraction. The numerical simulations with the Cartesian stress formulation cannot reach such high Weissenberg numbers and run into convergence failure associated with the so-called high Weissenberg number problem.en
dc.description.affiliationDepartment of Mathematical Sciences University of Bath
dc.description.affiliationInstituto Metrópole Digital Universidade Federal Do Rio Grande Do Norte, RN
dc.description.affiliationDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente
dc.description.affiliationInstituto de Ciências Matemáticas e de Computação Universidade de São Paulo, São Carlos
dc.description.affiliationUnespDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente
dc.identifierhttp://dx.doi.org/10.1063/5.0125940
dc.identifier.citationPhysics of Fluids, v. 34, n. 11, 2022.
dc.identifier.doi10.1063/5.0125940
dc.identifier.issn1089-7666
dc.identifier.issn1070-6631
dc.identifier.scopus2-s2.0-85143978800
dc.identifier.urihttp://hdl.handle.net/11449/248031
dc.language.isoeng
dc.relation.ispartofPhysics of Fluids
dc.sourceScopus
dc.titleNumerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluidsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-2565-0566[1]
unesp.author.orcid0000-0002-7046-5108[2]
unesp.author.orcid0000-0002-0904-6561[3]
unesp.author.orcid0000-0002-4568-2776[4]
unesp.departmentMatemática e Computação - FCTpt

Arquivos