Numerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluids
| dc.contributor.author | Evans, J. D. | |
| dc.contributor.author | Palhares Junior, I. L. | |
| dc.contributor.author | Oishi, C. M. [UNESP] | |
| dc.contributor.author | Ruano Neto, F. | |
| dc.contributor.institution | University of Bath | |
| dc.contributor.institution | Universidade Federal Do Rio Grande Do Norte | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.date.accessioned | 2023-07-29T13:32:34Z | |
| dc.date.available | 2023-07-29T13:32:34Z | |
| dc.date.issued | 2022-11-01 | |
| dc.description.abstract | We verify numerically the theoretical stress singularities for two viscoelastic models that occur at sharp corners. The models considered are the Giesekus and Phan-Thien-Tanner (PTT), both of which are shear thinning and are able to capture realistic polymer behaviors. The theoretical asymptotic behavior of these two models at sharp corners has previously been found to involve an integrable solvent and polymer elastic stress singularity, along with narrow elastic stress boundary layers at the walls of the corner. We demonstrate here the validity of these theoretical results through numerical simulation of the classical contraction flow and analyzing the 270 ° corner. Numerical results are presented, verifying both the solvent and polymer stress singularities, as well as the dominant terms in the constitutive equations supporting the elastic boundary layer structures. For comparison at Weissenberg order one, we consider both the Cartesian stress formulation and the alternative natural stress formulation of the viscoelastic constitutive equations. Numerically, it is shown that the natural stress formulation gives increased accuracy and convergence behavior at the stress singularity and, moreover, encounters no upper Weissenberg number limitation in the global flow simulation for sufficiently large solvent viscosity fraction. The numerical simulations with the Cartesian stress formulation cannot reach such high Weissenberg numbers and run into convergence failure associated with the so-called high Weissenberg number problem. | en |
| dc.description.affiliation | Department of Mathematical Sciences University of Bath | |
| dc.description.affiliation | Instituto Metrópole Digital Universidade Federal Do Rio Grande Do Norte, RN | |
| dc.description.affiliation | Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente | |
| dc.description.affiliation | Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo, São Carlos | |
| dc.description.affiliationUnesp | Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente | |
| dc.identifier | http://dx.doi.org/10.1063/5.0125940 | |
| dc.identifier.citation | Physics of Fluids, v. 34, n. 11, 2022. | |
| dc.identifier.doi | 10.1063/5.0125940 | |
| dc.identifier.issn | 1089-7666 | |
| dc.identifier.issn | 1070-6631 | |
| dc.identifier.scopus | 2-s2.0-85143978800 | |
| dc.identifier.uri | http://hdl.handle.net/11449/248031 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Physics of Fluids | |
| dc.source | Scopus | |
| dc.title | Numerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluids | en |
| dc.type | Artigo | |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-2565-0566[1] | |
| unesp.author.orcid | 0000-0002-7046-5108[2] | |
| unesp.author.orcid | 0000-0002-0904-6561[3] | |
| unesp.author.orcid | 0000-0002-4568-2776[4] | |
| unesp.department | Matemática e Computação - FCT | pt |
