Publicação:
Elicitation of multivariate prior distributions: A nonparametric Bayesian approach

dc.contributor.authorMoala, Fernando Antonio [UNESP]
dc.contributor.authorO'Hagan, Anthony
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Sheffield
dc.date.accessioned2014-05-20T15:33:45Z
dc.date.available2014-05-20T15:33:45Z
dc.date.issued2010-07-01
dc.description.abstractIn the context of Bayesian statistical analysis, elicitation is the process of formulating a prior density f(.) about one or more uncertain quantities to represent a person's knowledge and beliefs. Several different methods of eliciting prior distributions for one unknown parameter have been proposed. However, there are relatively few methods for specifying a multivariate prior distribution and most are just applicable to specific classes of problems and/or based on restrictive conditions, such as independence of variables. Besides, many of these procedures require the elicitation of variances and correlations, and sometimes elicitation of hyperparameters which are difficult for experts to specify in practice. Garthwaite et al. (2005) discuss the different methods proposed in the literature and the difficulties of eliciting multivariate prior distributions. We describe a flexible method of eliciting multivariate prior distributions applicable to a wide class of practical problems. Our approach does not assume a parametric form for the unknown prior density f(.), instead we use nonparametric Bayesian inference, modelling f(.) by a Gaussian process prior distribution. The expert is then asked to specify certain summaries of his/her distribution, such as the mean, mode, marginal quantiles and a small number of joint probabilities. The analyst receives that information, treating it as a data set D with which to update his/her prior beliefs to obtain the posterior distribution for f(.). Theoretical properties of joint and marginal priors are derived and numerical illustrations to demonstrate our approach are given. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, FCT, Dept Math & Stat, São Paulo, Brazil
dc.description.affiliationUniv Sheffield, Dept Probabil & Stat, Sheffield S10 2TN, S Yorkshire, England
dc.description.affiliationUnespUniv Estadual Paulista, FCT, Dept Math & Stat, São Paulo, Brazil
dc.format.extent1635-1655
dc.identifierhttp://dx.doi.org/10.1016/j.jspi.2010.01.004
dc.identifier.citationJournal of Statistical Planning and Inference. Amsterdam: Elsevier B.V., v. 140, n. 7, p. 1635-1655, 2010.
dc.identifier.doi10.1016/j.jspi.2010.01.004
dc.identifier.issn0378-3758
dc.identifier.lattes1621269552366697
dc.identifier.orcid0000-0002-2445-0407
dc.identifier.urihttp://hdl.handle.net/11449/42301
dc.identifier.wosWOS:000276369000003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofJournal of Statistical Planning and Inference
dc.relation.ispartofjcr0.814
dc.relation.ispartofsjr1,226
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectElicitationen
dc.subjectExperten
dc.subjectAnalysten
dc.subjectGaussian processen
dc.subjectPrior distributionen
dc.titleElicitation of multivariate prior distributions: A nonparametric Bayesian approachen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes1621269552366697[1]
unesp.author.orcid0000-0002-7994-0702[2]
unesp.author.orcid0000-0002-2445-0407[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentMatemática e Computação - FCTpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: