Logo do repositório

Near-infrared spectroscopy used to predict soybean seed germination and vigour

dc.contributor.authorAl-Amery, Maythem
dc.contributor.authorGeneve, Robert L.
dc.contributor.authorSanches, Mauricio F. [UNESP]
dc.contributor.authorArmstrong, Paul R.
dc.contributor.authorMaghirang, Elizabeth B.
dc.contributor.authorLee, Chad
dc.contributor.authorVieira, Roberval D. [UNESP]
dc.contributor.authorHildebrand, David F.
dc.contributor.institutionUniv Baghdad
dc.contributor.institutionUniv Kentucky
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUSDA ARS
dc.date.accessioned2019-10-03T18:19:19Z
dc.date.available2019-10-03T18:19:19Z
dc.date.issued2018-09-01
dc.description.abstractRapid, non-destructive methods for measuring seed germination and vigour are valuable. Standard germination and seed vigour were determined using 81 soybean seed lots. From these data, seed lots were separated into high and low germinating seed lots as well as high, medium and low vigour seed lots. Near-infrared spectra (950-1650 nm) were collected for training and validation samples for each seed category and used to create partial least squares (PLS) prediction models. For both germination and vigour, qualitative models provided better discrimination of high and low performing seed lots compared with quantitative models. The qualitative germination prediction models correctly identified low and high germination seed lots with an accuracy between 85.7 and 89.7%. For seed vigour, qualitative predictions for the 3-category (low, medium and high vigour) models could not adequately separate high and medium vigour seeds. However, the 2-category (low, medium plus high vigour) prediction models could correctly identify low vigour seed lots between 80 and 100% and the medium plus high vigour seed lots between 96.3 and 96.6%. To our knowledge, the current study is the first to provide near-infrared spectroscopy (NIRS)-based predictive models using agronomically meaningful cut-offs for standard germination and vigour on a commercial scale using over 80 seed lots.en
dc.description.affiliationUniv Baghdad, Coll Sci Women, Dept Biol, Baghdad, Iraq
dc.description.affiliationUniv Kentucky, Dept Hort, Lexington, KY 40546 USA
dc.description.affiliationSao Paulo State Univ, Sch Agr & Veterinarian Sci, Jaboticabal, Brazil
dc.description.affiliationUSDA ARS, Ctr Grain & Anim Hlth Res, Manhattan, KS 66502 USA
dc.description.affiliationUniv Kentucky, Dept Plant & Soil Sci, Lexington, KY 40546 USA
dc.description.affiliationUnespSao Paulo State Univ, Sch Agr & Veterinarian Sci, Jaboticabal, Brazil
dc.description.sponsorshipUSDA National Institute of Food and Agriculture, hatch project
dc.description.sponsorshipIdUSDA National Institute of Food and Agriculture, hatch project: KY011042
dc.description.sponsorshipIdUSDA National Institute of Food and Agriculture, hatch project: KY006062
dc.format.extent245-252
dc.identifierhttp://dx.doi.org/10.1017/S0960258518000119
dc.identifier.citationSeed Science Research. Cambridge: Cambridge Univ Press, v. 28, n. 3, p. 245-252, 2018.
dc.identifier.doi10.1017/S0960258518000119
dc.identifier.issn0960-2585
dc.identifier.urihttp://hdl.handle.net/11449/184017
dc.identifier.wosWOS:000447315600013
dc.language.isoeng
dc.publisherCambridge Univ Press
dc.relation.ispartofSeed Science Research
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectaccelerated ageing
dc.subjectelectrolyte leakage
dc.subjectGlycine max
dc.subjectNIR spectroscopy
dc.subjectvigour
dc.titleNear-infrared spectroscopy used to predict soybean seed germination and vigouren
dc.typeArtigopt
dcterms.licensehttp://journals.cambridge.org/action/displaySpecialPage?pageId=4676
dcterms.rightsHolderCambridge Univ Press
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos