Publicação: Intrusion Detection System Based On Flows Using Machine Learning Algorithms
dc.contributor.author | Kakihata, E. M. | |
dc.contributor.author | Sapia, H. M. | |
dc.contributor.author | Oikawa, R. T. | |
dc.contributor.author | Pereira, D. R. | |
dc.contributor.author | Papa, J. P. [UNESP] | |
dc.contributor.author | Alburquerque, V. H. C. | |
dc.contributor.author | Silva, F. A. | |
dc.contributor.institution | Univ Oeste Paulista Unoeste | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Fortaleza Unifor | |
dc.date.accessioned | 2018-11-26T17:41:53Z | |
dc.date.available | 2018-11-26T17:41:53Z | |
dc.date.issued | 2017-10-01 | |
dc.description.abstract | The use of technology by different types of devices generates a large flow of confidential and personal information. Referencing this situation, it is necessary to use computer security tools, such as Intrusion Detection Systems (IDS). This work presents an IDS that can perform the flow-based analysis (netflow). The first step of this research conducted an analysis on flows previously collected and properly detected three different types of attacks. In the second step, the flows were organized to be used in machine learning algorithms. | en |
dc.description.affiliation | Univ Oeste Paulista Unoeste, Presidente Prudente, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, UNESP, Comp Sci Dept, Bauru, SP, Brazil | |
dc.description.affiliation | Univ Fortaleza Unifor, Appl Informat Grad Program, Fortaleza, Ceara, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP, Comp Sci Dept, Bauru, SP, Brazil | |
dc.format.extent | 1988-1993 | |
dc.identifier.citation | Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 15, n. 10, p. 1988-1993, 2017. | |
dc.identifier.file | WOS000413336000025.pdf | |
dc.identifier.issn | 1548-0992 | |
dc.identifier.uri | http://hdl.handle.net/11449/163405 | |
dc.identifier.wos | WOS:000413336000025 | |
dc.language.iso | por | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | Ieee Latin America Transactions | |
dc.relation.ispartofsjr | 0,253 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | intrusion detection system | |
dc.subject | netflow | |
dc.subject | machine learning | |
dc.title | Intrusion Detection System Based On Flows Using Machine Learning Algorithms | en |
dc.type | Artigo | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee-inst Electrical Electronics Engineers Inc | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000413336000025.pdf
- Tamanho:
- 655.46 KB
- Formato:
- Adobe Portable Document Format
- Descrição: