Logotipo do repositório
 

Publicação:
Intrusion detection system using optimum-path forest

dc.contributor.authorPereira, Clayton [UNESP]
dc.contributor.authorNakamura, Rodrigo [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorCosta, Kelton
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSão Paulo State Technology College at Bauru
dc.date.accessioned2014-05-27T11:26:14Z
dc.date.available2014-05-27T11:26:14Z
dc.date.issued2011-12-01
dc.description.abstractIntrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. Neural networks and Support Vector Machines have been also extensively applied to this task. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In this research, we introduce a new pattern classifier named Optimum-Path Forest (OPF) to this task, which has demonstrated to be similar to the state-of-the-art pattern recognition techniques, but extremely more efficient for training patterns. Experiments on public datasets showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, as well as allow the algorithm to learn new attacks faster than the other techniques. © 2011 IEEE.en
dc.description.affiliationDepartment of Computing UNESP - Univ. Estadual Paulista
dc.description.affiliationDepartment of Computing São Paulo State Technology College at Bauru
dc.description.affiliationUnespDepartment of Computing UNESP - Univ. Estadual Paulista
dc.format.extent183-186
dc.identifierhttp://dx.doi.org/10.1109/LCN.2011.6115182
dc.identifier.citationProceedings - Conference on Local Computer Networks, LCN, p. 183-186.
dc.identifier.doi10.1109/LCN.2011.6115182
dc.identifier.issn0742-1303
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-84856156349
dc.identifier.urihttp://hdl.handle.net/11449/72855
dc.identifier.wosWOS:000300563800031
dc.language.isoeng
dc.relation.ispartofProceedings - Conference on Local Computer Networks, LCN
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial intelligence techniques
dc.subjectData sets
dc.subjectIntrusion Detection Systems
dc.subjectPattern classifier
dc.subjectPattern recognition techniques
dc.subjectReal time
dc.subjectTraining patterns
dc.subjectComputer crime
dc.subjectForestry
dc.subjectNeural networks
dc.subjectPattern recognition
dc.subjectTelecommunication networks
dc.subjectIntrusion detection
dc.subjectAlgorithms
dc.subjectArtificial Intelligence
dc.subjectNeural Networks
dc.subjectPattern Recognition
dc.subjectTelecommunications
dc.titleIntrusion detection system using optimum-path foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0002-6494-7514[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos