Logo do repositório
 

Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC

dc.contributor.authorRosa, GJM
dc.contributor.authorGianola, D.
dc.contributor.authorPadovani, C. R.
dc.contributor.institutionMichigan State University
dc.contributor.institutionUniv Wisconsin
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:27:12Z
dc.date.available2014-05-20T15:27:12Z
dc.date.issued2004-08-01
dc.description.abstractLinear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.en
dc.description.affiliationMichigan State Univ, Dept Anim Sci, E Lansing, MI 48824 USA
dc.description.affiliationUniv Wisconsin, Madison, WI USA
dc.description.affiliationUNESP, São Paulo, Brazil
dc.description.affiliationUnespUNESP, São Paulo, Brazil
dc.format.extent855-873
dc.identifierhttp://dx.doi.org/10.1080/0266476042000214538
dc.identifier.citationJournal of Applied Statistics. Basingstoke: Carfax Publishing, v. 31, n. 7, p. 855-873, 2004.
dc.identifier.doi10.1080/0266476042000214538
dc.identifier.issn0266-4763
dc.identifier.lattes8727897080522289
dc.identifier.urihttp://hdl.handle.net/11449/37227
dc.identifier.wosWOS:000223673500008
dc.language.isoeng
dc.publisherCarfax Publishing
dc.relation.ispartofJournal of Applied Statistics
dc.relation.ispartofjcr0.699
dc.relation.ispartofsjr0,475
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectrobust-inferencept
dc.subjectlongitudinal studypt
dc.subjectmixed modelpt
dc.subjectthick-tailed distributionpt
dc.subjectheteroscedasticitypt
dc.subjectBayesian inferencept
dc.titleBayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMCen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderCarfax Publishing
dspace.entity.typePublication
unesp.author.lattes8727897080522289[3]
unesp.author.orcid0000-0002-7719-9682[3]
unesp.author.orcid0000-0001-9172-6461[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: