Logotipo do repositório
 

Publicação:
Artificial Neural Network applied as a methodology of mosquito species identification

dc.contributor.authorLorenz, Camila
dc.contributor.authorFerraudo, Antonio Sergio [UNESP]
dc.contributor.authorSuesdek, Lincoln
dc.contributor.institutionInst Butantan
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-27T04:54:26Z
dc.date.available2018-11-27T04:54:26Z
dc.date.issued2015-12-01
dc.description.abstractThere are about 200 species of mosquitoes (Culicidae) known to be vectors of pathogens that cause diseases in humans. Correct identification of mosquito species is an essential step in the development of effective control strategies for these diseases; recognizing the vectors of pathogens is integral to understanding transmission. Unfortunately, taxonomic identification of mosquitoes is a laborious task, which requires trained experts, and it is jeopardized by the high variability of morphological and molecular characters found within the Culicidae family. In this context, the development of an automatized species identification method would be a valuable and more accessible resource to non-taxonomist and health professionals. In this work, an artificial neural network (ANN) technique was proposed for the identification and classification of 17 species of the genera Anopheles, Aedes, and Culex, based on wing shape characters. We tested the hypothesis that classification using ANN is better than traditional classification by discriminant analysis (DA). Thirty-two wing shape principal components were used as input to a Multilayer Perceptron Classification ANN. The obtained ANN correctly identified species with accuracy rates ranging from 85.70% to 100%, and classified species more efficiently than did the traditional method of multivariate discriminant analysis. The results highlight the power of ANNs to diagnose mosquito species and to partly automatize taxonomic identification. These findings also support the hypothesis that wing venation patterns are species-specific, and thus should be included in taxonomic keys. (C) 2015 Elsevier B.V. All rights reserved.en
dc.description.affiliationInst Butantan, BR-05509300 Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Ciencias Biomed, Biol Relacao Patogenohospedeiro, BR-05508000 Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, BR-14884900 Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Trop Med, Programa Posgrad Med Trop, Sao Paulo, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, BR-14884900 Sao Paulo, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCAPES: 23038.005274/2011-24
dc.description.sponsorshipIdCAPES: 1275/2011
dc.description.sponsorshipIdFAPESP: 2013/05521-9
dc.format.extent165-169
dc.identifierhttp://dx.doi.org/10.1016/j.actatropica.2015.09.011
dc.identifier.citationActa Tropica. Amsterdam: Elsevier Science Bv, v. 152, p. 165-169, 2015.
dc.identifier.doi10.1016/j.actatropica.2015.09.011
dc.identifier.fileWOS000365057900023.pdf
dc.identifier.issn0001-706X
dc.identifier.urihttp://hdl.handle.net/11449/164977
dc.identifier.wosWOS:000365057900023
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofActa Tropica
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectWing
dc.subjectGeometric morphometrics
dc.subjectParasite vector
dc.subjectPrincipal components
dc.subjectArtificial neural network
dc.titleArtificial Neural Network applied as a methodology of mosquito species identificationen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes7159757610060958[2]
unesp.author.orcid0000-0003-2121-9063[1]
unesp.author.orcid0000-0002-7089-923X[2]
unesp.departmentCiências Exatas - FCAVpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000365057900023.pdf
Tamanho:
1.29 MB
Formato:
Adobe Portable Document Format
Descrição: