Logotipo do repositório
 

Publicação:
Detecção adaptativa de anomalias em redes de computadores utilizando técnicas não supervisionadas

Carregando...
Imagem de Miniatura

Orientador

Cansian, Adriano Mauro

Coorientador

Pós-graduação

Ciência da Computação - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

Ataques às redes de computadores têm sido cada vez mais constantes e possuem grande capacidade destrutiva. Os sistemas de detecção de intrusão possuem um importante papel na detecção destas ameaças. Dentre estes sistemas, a detecção de anomalias tem sido uma área amplamente explorada devido à possibilidade de detectar ataques até então desconhecidos. Devido à complexidade para a geração de modelos que sejam capazes de descrever o comportamento padrão de um ambiente, técnicas de aprendizagem automática vêm sendo amplamente exploradas. Este trabalho aborda a detecção de ataques a redes de computadores utilizando uma combinação de técnicas de agrupamento. Desse modo, espera-se obter um sistema adaptativo, capaz de encontrar anomalias presentes na rede sem a necessidade de uma etapa de treinamento com dados rotulados. Dado que a taxa de falsos negativos é um dos maiores problemas encontrados na utilização de algoritmos não supervisionados, pretende-se alcançar uma melhora neste quesito através do uso combinado de diferentes técnicas.

Resumo (inglês)

Attacks on computer networks have been constantly increased and have great destructive capacity. Intrusion detection systems have an important role in the detection of these threats. Among these systems, anomaly detection has been widely explored due to the possibility of detecting unknown attacks. These systems are usually built using machine learning techniques due to the complexity of generating models capable of describing the normal behavior of an environment. We aim to addresses the detection of anomalies on computer networks using a combination of clustering techniques. Thus, we expect to achieve an adaptive system, able to find anomalies present in the network without the need of a training step with labeled data. Given that false positive rate is one of the major problems faced when using unsupervised algorithms, we intend to achieve an improvement in this issue with the combined use of different techniques.

Descrição

Palavras-chave

Detecção de anomalias em redes, Aprendizado não supervisionado, Análise de fluxo de dados, Network anomaly detection, Unsupervised learning, Data stream analysis

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação