Logo do repositório

Barrett's Esophagus Identification Using Color Co-occurrence Matrices

dc.contributor.authorSouza, Luis A. de
dc.contributor.authorEbigbo, Alanna
dc.contributor.authorProbst, Andreas
dc.contributor.authorMessmann, Helmut
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorMendel, Robert
dc.contributor.authorPalm, Christoph
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionKlinikum Augsburg III
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionOstbayer Tech Hsch Regensburg
dc.date.accessioned2019-10-04T12:35:56Z
dc.date.available2019-10-04T12:35:56Z
dc.date.issued2018-01-01
dc.description.abstractIn this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett's Esophagus (BE) and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basis Function (SVM-RBF) and Bayesian classifier supports the context of automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to 76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationKlinikum Augsburg III, Med Klin, Augsburg, Germany
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationOstbayer Tech Hsch Regensburg, Regensburg Med Image Comp, Regensburg, Germany
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.sponsorshipDFG
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdDFG: PA 1595/3-1
dc.description.sponsorshipIdCAPES: BEX 0581-16-0
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.format.extent166-173
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2018.00028
dc.identifier.citationProceedings 2018 31st Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 166-173, 2018.
dc.identifier.doi10.1109/SIBGRAPI.2018.00028
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/185485
dc.identifier.wosWOS:000459886600022
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartofProceedings 2018 31st Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectBarrett's Esophagus
dc.subjectCo-occurrence Matrices
dc.subjectMachine Learning
dc.subjectTexture Analysis
dc.titleBarrett's Esophagus Identification Using Color Co-occurrence Matricesen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos