Repository logo
 

Publication:
Image Re-Ranking Acceleration on GPUs

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee

Type

Work presented at event

Access right

Acesso abertoAcesso Aberto

Abstract

Huge image collections are becoming available lately. In this scenario, the use of Content-Based Image Retrieval (CBIR) systems has emerged as a promising approach to support image searches. The objective of CBIR systems is to retrieve the most similar images in a collection, given a query image, by taking into account image visual properties such as texture, color, and shape. In these systems, the effectiveness of the retrieval process depends heavily on the accuracy of ranking approaches. Recently, re-ranking approaches have been proposed to improve the effectiveness of CBIR systems by taking into account the relationships among images. The re-ranking approaches consider the relationships among all images in a given dataset. These approaches typically demands a huge amount of computational power, which hampers its use in practical situations. On the other hand, these methods can be massively parallelized. In this paper, we propose to speedup the computation of the RL-Sim algorithm, a recently proposed image re-ranking approach, by using the computational power of Graphics Processing Units (GPU). GPUs are emerging as relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. We address the image re-ranking performance challenges by proposing a parallel solution designed to fit the computational model of GPUs. We conducted an experimental evaluation considering different implementations and devices. Experimental results demonstrate that significant performance gains can be obtained. Our approach achieves speedups of 7x from serial implementation considering the overall algorithm and up to 36x on its core steps.

Description

Keywords

content-based image retrieval, image re-ranking, parallel computing, OpenCL, GPU

Language

English

Citation

2013 25th International Symposium On Computer Architecture And High Performance Computing (sbac-pad). New York: Ieee, p. 176-183, 2013.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs