Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus

dc.contributor.authorSouza Jr, Luis A.
dc.contributor.authorPacheco, André G. C.
dc.contributor.authorPassos, Leandro A. [UNESP]
dc.contributor.authorSantana, Marcos C. S. [UNESP]
dc.contributor.authorMendel, Robert
dc.contributor.authorEbigbo, Alanna
dc.contributor.authorProbst, Andreas
dc.contributor.authorMessmann, Helmut
dc.contributor.authorPalm, Christoph
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionFederal University of Espírito Santo
dc.contributor.institutionOstbayerische Technische Hochschule Regensburg (OTH Regensburg)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity Hospital Augsburg
dc.date.accessioned2025-04-29T20:11:00Z
dc.date.issued2024-06-01
dc.description.abstractLimitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett’s esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer.en
dc.description.affiliationDepartment of Informatics Federal University of Espírito Santo
dc.description.affiliationRegensburg Medical Image Computing (ReMIC) Ostbayerische Technische Hochschule Regensburg (OTH Regensburg)
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationDepartment of Gastroenterology University Hospital Augsburg
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipAlexander von Humboldt-Stiftung
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2017/04847-9
dc.description.sponsorshipIdFAPESP: 2019/08605-5
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdAlexander von Humboldt-Stiftung: BEX 0581-16-0
dc.format.extent10445-10459
dc.identifierhttp://dx.doi.org/10.1007/s00521-024-09615-z
dc.identifier.citationNeural Computing and Applications, v. 36, n. 18, p. 10445-10459, 2024.
dc.identifier.doi10.1007/s00521-024-09615-z
dc.identifier.issn1433-3058
dc.identifier.issn0941-0643
dc.identifier.scopus2-s2.0-85187645947
dc.identifier.urihttps://hdl.handle.net/11449/308009
dc.language.isoeng
dc.relation.ispartofNeural Computing and Applications
dc.sourceScopus
dc.subjectAdenocarcinoma
dc.subjectBarrett’s esophagus
dc.subjectDeep learning
dc.subjectMachine learning
dc.subjectObject detector
dc.titleDeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagusen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-7060-6097[1]

Arquivos

Coleções