Logotipo do repositório
 

Publicação:
A restricted boltzmann machine-based approach for robust dimensionality reduction

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Data dimensionality is an important issue to be adressed by pattern recognition systems. Despite of storage and processing, working with high-dimensional feature vectors also requires complex optimization methods. A proper selection of the most important features is essential and dimensionality reduction techniques can also be applied in order to avoid dealing with more information than needed. One of the most important analytical techniques for such task is Principal Component Analysis (PCA). In this work we propose a novel and more robust dimensionality reduction approach based on the Restricted Boltzmann Machines (RBMs), neural networks able to learn the probability distribution of the set of training samples, identifying the best features to discriminate them, for face spoofing detection. Results of the proposed approach show that the features learned and extracted by RBMs are more robust than the ones analytically obtained by PCA for differentiating between real and fake facial images.

Descrição

Palavras-chave

Dimensionality reduction, Face spoofing detection, Probabilistic neural networks, Restricted Boltzmann Machines

Idioma

Inglês

Como citar

Proceedings - 13th Workshop of Computer Vision, WVC 2017, v. 2018-January, p. 138-143.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação