Logotipo do repositório
 

Publicação:
Use of polyaluminium chloride in studies of water supply treatability through coagulation, flocculation, and sedimentation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Assoc Brasileira Engenharia Sanitaria Ambiental

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Polyaluminium chloride (PAC) is a pre-hydrolyzed inorganic polymeric coagulant that is being used widely in the treatment of water supply and wastewater by forming a hard and heavy Al(OH)(3)* precipitate, in addition to having a smaller effect on pH. The literature, however, is still scarce in correlating the chemistry and physics of the coagulant with process optimizations. The objective of this paper is to use PAC in studies of water supply treatability through coagulation, flocculation, and sedimentation. For this purpose, a mathematical modeling was initially performed to adjust turbidity and pH, and then remaining turbidity and apparent color coagulation diagrams were constructed with a pH of 4.0 to 9.0 and a dosage of 10 to 120 mg.L-1 of PAC (0.6 to 6.9 mg.L--(1) of Al3+). Different gradients of velocity and mixing times for coagulation and flocculation were also studied. The coagulation diagrams indicated satisfactory results in the pH range between 7 and 9 with a dosage higher than 30 mg.L of PAC (1.7 mg.L--(1) of Al3+), and it is related to the minimum solubility of Al(OH)(3)*. Coagulation and flocculation optimizations achieved an improvement of up to 79% in the remaining turbidity, a reduction of up to 83% in the settler area or a reduction of up to 67% in PAC dosage, due to an increase in the size of the floc produced. An in-depth knowledge of the chemistry and physics of the process related to the use of PAC can, therefore, bring benefits to its use.

Descrição

Palavras-chave

coagulation diagram, polyaluminium chloride, PAC, process optimization

Idioma

Português

Como citar

Engenharia Sanitaria E Ambiental. Rio De Janeiro: Assoc Brasileira Engenharia Sanitaria Ambiental, v. 25, n. 5, p. 667-676, 2020.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação