Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Clay mineral composition drives soil structure behavior and the associated physical properties in Brazilian Oxisols

dc.contributor.authorPessoa, Thaís Nascimento
dc.contributor.authorBovi, Renata Cristina [UNESP]
dc.contributor.authorNunes, Márcio Renato
dc.contributor.authorCooper, Miguel
dc.contributor.authorUteau, Daniel
dc.contributor.authorPeth, Stephan
dc.contributor.authorLibardi, Paulo Leonel
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Florida
dc.contributor.institutionUniversity of Kassel
dc.contributor.institutionLeibniz University Hannover
dc.date.accessioned2025-04-29T20:14:55Z
dc.date.issued2024-09-01
dc.description.abstractSoil aggregation controls several physical, chemical, and biological processes. Soil organic matter (SOM) and its stabilizing agents are regarded as the most important factors driving formation and stabilization of soil aggregates. However, aggregate stability in highly weathered soils may also be related to clay mineral composition and soil chemical properties. This study aims to evaluate the processes controlling soil aggregate stability and to understand the influence of soil chemical and clay mineral composition on the structural stability of highly weathered soils. Four Brazilian Oxisols were investigated: (P1) Xanthic Kandiustox, (P2) Rhodic Haplustox, (P3) Anionic Acrustox, and (P4) Typic Hapludox. Undisturbed and disturbed soil samples were collected from the Bw horizon under a native forest. Soil structural stability was evaluated using a variety of techniques and indices, including mean weight diameter (MWD) by hydraulic stress, mechanically-dispersible clay (MDC) by turbidimetry, tensile strength (TS) by crushing aggregates, and soil structural stability index (SSI) taking into account soil organic carbon (SOC). In general, P1 exhibited the highest MDC content (3.05 ± 0.54, Nephelometric Turbidity Unit, NTU/g L-−1), while P4 had the highest MWD (10.26 ± 0.24 mm) and the highest TS (80.42 ± 18.54 kPa) within the 8–4 mm aggregate size class. The TS for the 4–2 mm and 2–1 mm aggregate size classes was found to be equal for P2 and P4, with values ranging from 158.17 ± 24.70 kPa to 148.04 ± 38.50 kPa in the 4–2 mm class, and from 459.51 ± 189 kPa to 328.35 ± 78.22 kPa in the 2–1 mm one. The SSI was found to be inadequate for evaluating the structural stability of the Oxisols. In general, SOC was found to be the main stabilizing agent of larger aggregates, while clay mineral composition determined the stability of smaller aggregates. Goethite associated with gibbsite was more effective in increasing the structural stability of P2 and P4. Furthermore, kaolinites with low crystallinity, which are found in clayey Oxisols, resulted in a high specific surface area, particularly in Rhodic Haplustox and Typic Hapludox soils, which promoted more interactions with other clay minerals (e.g., goethite and gibbsite) and SOC, thereby increasing the tensile strength in these Oxisols. In fact, the formation and stabilization of aggregates in highly weathered soils depends on several factors, but the influence of clay mineral composition stands out as the most pronounced.en
dc.description.affiliationDepartment of Soil Science “Luiz de Queiroz” College of Agriculture University of São Paulo, Pádua Dias Avenue 11, São Paulo
dc.description.affiliationSão Paulo State University School of Agriculture Department of Forest Science Soils and Environment, Av. Universitária, 3780, São Paulo
dc.description.affiliationDepartment of Soil Water and Ecosystem Sciences and Global Food Systems Institute University of Florida
dc.description.affiliationDepartment of Soil Science Faculty of Ecological Agriculture University of Kassel, Nordbahnhofstr. 1a
dc.description.affiliationInstitute of Earth System Sciences Section Soil Science Leibniz University Hannover, Herrenhäuser Str. 2
dc.description.affiliationUnespSão Paulo State University School of Agriculture Department of Forest Science Soils and Environment, Av. Universitária, 3780, São Paulo
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipUniversität Kassel
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: #140126/2017-1
dc.identifierhttp://dx.doi.org/10.1016/j.geodrs.2024.e00837
dc.identifier.citationGeoderma Regional, v. 38.
dc.identifier.doi10.1016/j.geodrs.2024.e00837
dc.identifier.issn2352-0094
dc.identifier.scopus2-s2.0-85198253733
dc.identifier.urihttps://hdl.handle.net/11449/309237
dc.language.isoeng
dc.relation.ispartofGeoderma Regional
dc.sourceScopus
dc.subjectIron and aluminum oxides
dc.subjectMean weight diameter
dc.subjectMechanically-dispersible clay
dc.subjectSoil organic matter
dc.subjectTensile strength
dc.titleClay mineral composition drives soil structure behavior and the associated physical properties in Brazilian Oxisolsen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções