Logotipo do repositório
 

Publicação:
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Forecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1).

Descrição

Palavras-chave

crop model, water balance, prediction, production

Idioma

Inglês

Como citar

Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação