Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Multiple linear regression to forecast decendial weather for agricultural purposes

dc.contributor.authorVieira, Igor Cristian Oliveira [UNESP]
dc.contributor.authorde Moraes, José Reinaldo da Silva Cabral [UNESP]
dc.contributor.authorSantos, Valter Barbosa Dos [UNESP]
dc.contributor.authorCosta, Deborah Luciany Pires
dc.contributor.authorde Faria, Rogério Teixeira [UNESP]
dc.contributor.authorde Souza, Paulo Jorge de Oliveira Ponte
dc.contributor.authorRolim, Glauco de Souza [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal Rural da Amazônia (UFRA)
dc.date.accessioned2025-04-29T20:03:14Z
dc.date.issued2024-05-07
dc.description.abstractPredicting climate conditions helps in decision-making due to its great influence on crops, enabling more efficient production strategies and reducing damage, especially in the most critical phases of corn cultivation that determine its productive potential. A multiple linear regression model (RLM) was developed to forecast meteorological elements at least 2 months in advance for 15 locations that are prominent in corn production in Brazil. A set of daily data on average, minimum and maximum air temperature, wind speed, relative humidity and global radiation provided by the NASA/POWER system and precipitation data obtained from the National Water Agency (2003 to 2019) was used, organized into decennials (DEC) depending on the average corn cycle and grouped into two types of climate (Am and Aw). Forecasts using 14 DEC in both climate types showed, on average, high accuracy for all elements. The results indicated that the MLR has high accuracy in predicting these variables, especially in estimating wind speed. For the more volatile elements, such as precipitation, the model was still able to maintain acceptable reliability despite the complexities inherent in its prediction. In addition, the performance of the Camargo model to calculate the water balance was highlighted. This model required less input data to calculate water storage in the soil, which is decisive for planning corn cultivation, being an effective tool for predicting climatic elements on a ten-day scale.en
dc.description.affiliationPrograma de Pós-Graduação Stricto Sensu de Ciência do Solo Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp)
dc.description.affiliationPrograma de Pós-Graduação Stricto Sensu de Produção Vegetal Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp)
dc.description.affiliationPrograma de Pós-Graduação Stricto Sensu em Agronomia Universidade Federal Rural da Amazônia (UFRA)
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (Unesp)
dc.description.affiliationUniversidade Federal Rural da Amazônia (UFRA)
dc.description.affiliationUnespPrograma de Pós-Graduação Stricto Sensu de Ciência do Solo Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp)
dc.description.affiliationUnespPrograma de Pós-Graduação Stricto Sensu de Produção Vegetal Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp)
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (Unesp)
dc.format.extent1434-1456
dc.identifierhttp://dx.doi.org/10.26848/rbgf.v17.3.p1434-1456
dc.identifier.citationRevista Brasileira de Geografia Fisica, v. 17, n. 3, p. 1434-1456, 2024.
dc.identifier.doi10.26848/rbgf.v17.3.p1434-1456
dc.identifier.issn1984-2295
dc.identifier.scopus2-s2.0-85193680828
dc.identifier.urihttps://hdl.handle.net/11449/305507
dc.language.isopor
dc.relation.ispartofRevista Brasileira de Geografia Fisica
dc.sourceScopus
dc.subjectAgrometeorology, machine learning
dc.subjectpredictive models
dc.subjectweather forecast
dc.titleMultiple linear regression to forecast decendial weather for agricultural purposesen
dc.titleModelo de previsão meteorológica decendial para fins agrícolas utilizando regressão linear múltiplapt
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-0488-5008[1]
unesp.author.orcid0000-0003-4683-3203[7]

Arquivos

Coleções