Logo do repositório

Promising composites for wear resistant load-bearing implant applications: Low elastic moduli of β Ti–Nb alloy reinforced with TiC particles and/or TiB whiskers

dc.contributor.authorGonçalves, Vinícius Richieri Manso [UNESP]
dc.contributor.authorCorrêa, Diego Rafael Nespeque [UNESP]
dc.contributor.authorde Sousa, Tiago dos Santos Pereira [UNESP]
dc.contributor.authorPintão, Carlos Alberto Fonzar [UNESP]
dc.contributor.authorGrandini, Carlos Roberto [UNESP]
dc.contributor.authorAfonso, Conrado Ramos Moreira
dc.contributor.authorLisboa-Filho, Paulo Noronha [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2025-04-29T20:09:18Z
dc.date.issued2024-05-01
dc.description.abstractDespite β-type Ti alloys achieving a low elastic modulus, metallic implants generally exhibit poor wear resistance. To address this issue, in-situ Ti-based matrix composites (TMCs) are considered due to their strong bonding at the matrix/reinforcement interface. While TiC particles and TiB whiskers are common reinforcements for in-situ TMCs, limited research combines their effects with the low elastic modulus of Ti alloys. Here, we present a novel approach using arc-melting on Ti–40Nb alloy with 5 vol% additions of NbC, NbB2, and B4C. Respectively, three TMCs were obtained with the β-type Ti–Nb matrices reinforced individually with TiC particles, TiB whiskers, and hybridized with both. The produced TMCs exhibited the same passive behavior of the unreinforced Ti–40Nb alloy. However, tribocorrosion resistances were improved, as TMCs achieved nobler potentials during sliding than the unreinforced alloy (−0.5 and −0.9 V, respectively). Notably, the TiB-reinforced and the hybrid reinforced TMCs displayed minimal wear damage, while the TiC-reinforced TMC achieved a remarkable low elastic modulus of approximately 73 GPa. This study introduces promising alternatives for wear-resistant load-bearing implant applications.en
dc.description.affiliationUNESP – São Paulo State University School of Science, Dep. of Physics, SP
dc.description.affiliationUFSCar – Federal University of São Carlos Department of Materials Engineering, SP
dc.description.affiliationUnespUNESP – São Paulo State University School of Science, Dep. of Physics, SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFAPESP: 2015/50280-5
dc.description.sponsorshipIdFAPESP: 2018/00746-6
dc.description.sponsorshipIdFAPESP: 2018/18293-8
dc.description.sponsorshipIdCNPq: 308.204/2017-4
dc.description.sponsorshipIdCNPq: 407251/2018-9
dc.format.extent879-889
dc.identifierhttp://dx.doi.org/10.1016/j.jmrt.2024.03.135
dc.identifier.citationJournal of Materials Research and Technology, v. 30, p. 879-889.
dc.identifier.doi10.1016/j.jmrt.2024.03.135
dc.identifier.issn2238-7854
dc.identifier.scopus2-s2.0-85188671564
dc.identifier.urihttps://hdl.handle.net/11449/307429
dc.language.isoeng
dc.relation.ispartofJournal of Materials Research and Technology
dc.sourceScopus
dc.subjectBiomaterials
dc.subjectComposites
dc.subjectMicromechanics
dc.subjectTitanium alloys
dc.subjectTribo-electrochemical behavior
dc.titlePromising composites for wear resistant load-bearing implant applications: Low elastic moduli of β Ti–Nb alloy reinforced with TiC particles and/or TiB whiskersen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-3464-9217[1]
unesp.author.orcid0000-0002-9934-1870[3]
unesp.author.orcid0000-0002-7734-4069[7]

Arquivos

Coleções