Logotipo do repositório
 

Publicação:
Learning Parameters in Deep Belief Networks Through Firefly Algorithm

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Restricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets.

Descrição

Palavras-chave

Deep Belief Networks, Deep learning, Firefly algorithm

Idioma

Inglês

Como citar

Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação