Publicação:
Prediction of solar direct beam transmittance derived from global irradiation and sunshine duration using anfis

dc.contributor.authorSantos, Cícero Manoel dos
dc.contributor.authorEscobedo, João Francisco [UNESP]
dc.contributor.authorde Souza, Amaury
dc.contributor.authorda Silva, Maurício Bruno Prado [UNESP]
dc.contributor.authorAristone, Flavio
dc.contributor.institutionUniversidade Federal do Pará (UFPA)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Mato Grosso Do Sul
dc.date.accessioned2022-05-01T06:02:07Z
dc.date.available2022-05-01T06:02:07Z
dc.date.issued2021-08-10
dc.description.abstractThis work describes the application of models to estimate the transmitted fraction of direct solar irradiation into normal incidence (Ktb) as a function of the atmospheric transmissivity (Kt) and the insolation ratio (n/N). In the first model, the values of Ktb and Kt in the hourly (h) and daily (d) partitions were correlated using polynomial regression. In the second model, Ktb and n/N in the daily partition were correlated through linear regression. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to estimate the obtained values Ktb. The performance of ANFIS1 (as a function of Kt hourly), ANFIS2 (as a function of daily Kt), ANFIS3 (as a function of daily n/N), and ANFIS4 (as a function of the ratio of Kt and daily n/N) are compared to statistical models. Two databases, defined as a typical year and an atypical year, are adopted to validate the models and ANFIS. The models were validated comparing the estimate and measurements using the statistical indicators rMBE and rRMSE. The statistical models as a function of Kt resulted in hourly average (Ktbh): 〈rMBE〉=−4.08±2.18% and 〈rRMSE〉=25.97±0.90%; daily (Ktbd): 〈rMBE〉=−4.93±4.89% and 〈rRMSE〉=22.06±2.06%. The model as a function of the insolation ratio resulted in a daily average (Ktbd): 〈rMBE〉=−3.01±2.62% and 〈rRMSE〉=24.15±0.30%. The rMBE of models using ANFIS are lower than those of statistical models. The rRMSE value using ANFIS1 model was 〈24.45%〉, while using ANFIS2, ANFIS3, and ANFIS4 models, they resulted on 〈16.47%〉, 〈19.60%〉, and 〈14.60%〉 in average, respectively, lower than the statistical models. ANFIS's performance is superior to statistical models.en
dc.description.affiliationFaculty of Agronomic Engineering – UFPA, Altamira
dc.description.affiliationRural Engineering Department FCA/UNESP, São Paulo
dc.description.affiliationPhysics Institute Federal University of Mato Grosso Do Sul
dc.description.affiliationUnespRural Engineering Department FCA/UNESP, São Paulo
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent27905-27921
dc.identifierhttp://dx.doi.org/10.1016/j.ijhydene.2021.06.044
dc.identifier.citationInternational Journal of Hydrogen Energy, v. 46, n. 55, p. 27905-27921, 2021.
dc.identifier.doi10.1016/j.ijhydene.2021.06.044
dc.identifier.issn0360-3199
dc.identifier.scopus2-s2.0-85109017613
dc.identifier.urihttp://hdl.handle.net/11449/233215
dc.language.isoeng
dc.relation.ispartofInternational Journal of Hydrogen Energy
dc.sourceScopus
dc.subjectANFIS
dc.subjectClarity index
dc.subjectCloudiness
dc.subjectDirect irradiation
dc.subjectModels
dc.subjectSeasonality
dc.titlePrediction of solar direct beam transmittance derived from global irradiation and sunshine duration using anfisen
dc.typeResenha
dspace.entity.typePublication
unesp.departmentEngenharia Rural - FCApt

Arquivos