Logotipo do repositório
 

Publicação:
A novel deep learning method to identify single tree species in UAV-based hyperspectral images

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Deep neural networks are currently the focus of many remote sensing approaches related to forest management. Although they return satisfactory results in most tasks, some challenges related to hyperspectral data remain, like the curse of data dimensionality. In forested areas, another common problem is the highly-dense distribution of trees. In this paper, we propose a novel deep learning approach for hyperspectral imagery to identify single-tree species in highly-dense areas. We evaluated images with 25 spectral bands ranging from 506 to 820 nm taken over a semideciduous forest of the Brazilian Atlantic biome. We included in our network's architecture a band combination selection phase. This phase learns from multiple combinations between bands which contributed the most for the tree identification task. This is followed by a feature map extraction and a multi-stage model refinement of the confidence map to produce accurate results of a highly-dense target. Our method returned an f-measure, precision and recall values of 0.959, 0.973, and 0.945, respectively. The results were superior when compared with a principal component analysis (PCA) approach. Compared to other learning methods, ours estimate a combination of hyperspectral bands that most contribute to the mentioned task within the network's architecture. With this, the proposed method achieved state-of-the-art performance for detecting and geolocating individual tree-species in UAV-based hyperspectral images in a complex forest.

Descrição

Palavras-chave

Band selection, Convolutional neural network, Data-reduction, High-density object, Tree species identification

Idioma

Inglês

Como citar

Remote Sensing, v. 12, n. 8, 2020.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação